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Example
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or inserted pins (iEEG) as portrayed in Fig. 1.3.

Figure 1.3 : Data recording from the exposed surface of the brain in epileptic patients through A)

iEEG and B) ECoG. Figure C) shows the voltage activity of three Seizure Onset Zone channels as

the patient goes from normal activity of the brain to a seizure

Figure 1.3 shows how data is recorded from the exposed surface of the brain

via ECoG and iEEG. It also represents the collected data in terms of voltages from

three brain SOZ channels. To analyze the recorded data, we applied notch filters

with cuto↵ frequencies of 60 Hz and its harmonics to remove line noise from the

recorded data. We also removed the reference channels influence from the recordings.

Furthermore, we applied a low-pass filter with 100 Hz cuto↵ frequency, as the most

informative parts of the epileptic data are believed to be concentrated in these ranges

of frequencies (Martinerie et al., 1998). Using the mentioned filters, we removed line

noise and high-frequency noise from our recordings.



Can we predict and prevent the onset of seizures?

• less focus on the application


• more emphasize on tools


• let’s step back with a few more fundamental questions



• from data to understanding various disorders


• developing therapies


• patient-specific 


• episode-specific 


• scalability


• cost

How can engineers contribute to medicine?



Engineers

• problem solving with constraints


• developing tools


• sense and measure


• nano-electronics


• control—modulation, stimulation, pacing 


• machine learning and data analytics


• nonlinear and non-Gaussian



Example

• pacemakers



Example

• pacemakers


• can we modulate our neurological circuit?


• 86 billion neurons


• 10 micron diameter


• 100 Hz clock speed


• 100 trillion synapses


• complicated functionality with only 20 W of power



What am I excited about?

• can data analytics predict the onset?


• can we develop spatiotemporally precise modulation protocols to prevent the 
onset of seizures?



Epilepsy

• unprovoked and recurring seizures


• seizure


• no standard definition


• abnormally hyper-excited neuronal activities



• celebrities 

Epilepsy



Epilepsy

• 1% of world’s population 


• causes: stroke, tumors, infection, genetic, developmental,…


• 1/3 of patients do not respond to medication


• resection!!!!!


• deep brain stimulation?



The challenge ictal



The challenge

inter-ictal



The challenge

pre-ictal



Approach

• patient and episode specific


• identify the seizure onset zone 


• understand the dynamics of the underlying system


• predict seizures


• modulate (stimulate) to prevent the onset of seizure



Epilepsy 

• identify seizure onset zone
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Epilepsy 
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Causality

• one time series forecasting another


• economics


• transportation


• …


• n. wiener (1956), c. granger (1969), h. marko (1973)


• j. massey (1990), g. kramer (1998), 


• c. quinn, et. al. (2011)



A little background

• directed information and causality


• directional with temporal information
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A little background

• mutual information of time series


• no temporal and no causal information
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A little background

• directed information of time series


• where
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Back to seizures

• causal relation among electrodes 


• directed information


• model free—data driven


• k-nearest neighbor density estimation


• identify time series with largest directed information
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Seizure onset zone

• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal (period prior to seizure)
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Seizure onset zone

• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal (period prior to seizure)

flow between  
population of 

neurons 
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Seizure onset zone

• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal, ictal, post-ictalBefore Seizure
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Seizure onset zone

• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal (period prior to seizure)


• net degree of a node = out degree - in degree
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Seizure onset zone Before Seizure
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• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal (period prior to seizure)


• net degree of a node = out degree - in degree
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Seizure onset zone Before Seizure
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• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal (period prior to seizure)


• net degree of a node = out degree - in degree

Before Seizure

 LA
H5
 RAH1

 RAH2

RAMY2
 RPH4

RAINS3

RAMY4

RAMY3
 RPH3

RAMY12
0

2

4

6

8

10

12

14

16

Ne
t O

ut
lfo

w

 RAH1

 RAH2

 RPH4

RAMY2 RAINS3 RAMY4 RAMY3

 RPH3
RAMY12

RAMY9

RAMY5  RAH3

 LAH8

 RPH2

RAMY7  LAH5
 RAH5

RPBT11

RMOF5

RAMY10

RMOF10

RAMY11

RAINS4

RPBT1

RAMY6

RPH10

RAH13

 RAH6

LAH12

RAH10



Seizure onset zone Before Seizure
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• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal (period prior to seizure)


• net degree of a node = out degree - in degree
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• causal influence—directed connectivity


• a graph with electrodes as nodes and directed information as edge


• pre-ictal (period prior to seizure)


• net degree of a node = out degree - in degree

Seizure onset zone Before Seizure
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electrodes in seizure 
onset zone

nearly perfect match with the 
neurologist for all 12 patients
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Epilepsy

• focus on electrodes in the seizure onset zone—250 electrodes down to 6-10


• dynamics of time series to predict seizures



State space

• trajectory is nonlinear



State space

• trajectory is nonlinear


• inter-ictal and pre-ictal



State space

• trajectory is nonlinear


• inter-ictal and pre-ictal periods are not distinguishable



Dynamics

• capturing dynamics of recordings


• K recordings in time m are


• a linear approximation is often insufficient to capture the dynamics
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Dynamics

• time embedding


• dynamics result in


• a linear approximation has shown to be sufficient in many applications

X1 =

2

6664

X1 X2 . . . XM�h+1

X2 X3 . . . XM�h+2
...

...
. . .

...
Xh Xh+1 . . . XM
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X3 X4 . . . XM�h+3
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. . .
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3
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= f(X1)

X2 = AX1 where A is Kh⇥Kh

I. Mezic ́“Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics  



Example

Beyond (Near) Linear Separability

As developed up to now, the SVM only makes sense for problems that are (near) linearly separable

Many real world classification problems do not have this property

General approach: Replace the n⇥ p data matrix X with a n⇥ P data matrix � = �(X),
where each column of � is some nonlinear function of the columns of X

replace xi with �(xi)

D-33



Example

Beyond (Near) Linear Separability
General approach: Replace the n⇥ p data matrix X with a n⇥ P data matrix � = �(X),
where each column of � is some nonlinear function of the columns of X

Example adding a third, quadratic term

replace


xi[1]
xi[2]

�
2 R2 with �(xi) =

2

4
xi[1]
xi[2]p

xi[1]2 + xi[2]2

3

5 2 R3

D-34



Dynamic mode decomposition 

• the main objective is to estimate


• dynamics of the system is captured by eigenvector and eigenvalues of   


• the Kh x Kh matrix can be approximated by a smaller matrix

A

A = X2X�1
1 = X2US�1W>

A

A = �⇤��1

Ã = W>
r AWr = W>

r X2UrS�1
r



Extracting key feature

• spatiotemporal feature extraction

DMD Power DMD Phase

I. Mezic ́“Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics  



Features

• DMD phase correlations among electrodes and power versus frequencies

43

Feature 2:

Feature 1:

.

vs.



Back to seizure prediction

• dynamics Xm+1 = AmXm
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Fig. 4: Representation of the extracted spatio-temporal features from the
interictal and preictal states. The two figures on top show the DMD power
of fourteen SOZ channels versus frequency, where the figures in the middle
represent the DMD phase correlation among the same SOZ channels. The
figures on the bottom show the activity of one SOZ channel in the same state
that the two features are extracted.

we extracted the averaged features, representing 30 seconds of
brain activity, from non-overlapping consecutive windows as
we go from the interictal to the ictal. To measure features’
changes in time, we used the L2-norm distance. Figure 5 and
6 show the changes in both EmDMD phase correlation and
power versus frequency overtime for two different seizure files.

Fig. 5: Representation of the changes of the extracted features using the sliding
window approach in one seizure file of one patient with focal epilepsy. The
figure on top represents the changes of DMD phase correlation among the
SOZ channels covering almost 40 minutes of the interictal state, the preictal
state, as well as the ictal and postictal states of the brain. The figure on
the bottom shows the changes in DMD power among the SOZ channels in
frequency, covering the same states as the top figure. In both figures, the
vertical lines represent the start of the seizure, and every point represents the
difference between two non-overlapping 30 seconds.

In these two figures, every point represents the difference
between two non-overlapping 30 seconds of data, and the
vertical line shows the start of the seizure. We realize that both
features change significantly, sometime before the beginning
of the seizure in both patients.

Although both features in figure 5 change smoothly until
sometime before the start of the seizure, figure 6 shows a false
positive in changes of the EmDMD power in the interictal
state. This false positive might resemble some artifacts that
existed in the recorded data. Since we have defined two

features in our feature metric, one feature can compensate
for the false-positive in the other feature. Therefore, we can
increase the specificity of the significant testing of our seizure
prediction.

In the next section, we use the changes of the extracted
features to form a dataset with two labels, representing the
interictal and preictal states. Therefore, we apply linear SVM,
as a well-known supervised classifier, to perform seizure
prediction on the formed dataset.

Fig. 6: The same representation as figure 3 for one seizure file of another
patient. The existence of a false positive in the power change plot in the bottom
figure can be compensated with relying on the changes of phase correlation
feature in the top figure. In both figures, the vertical lines represent the start
of the seizure, and every point represents the difference between two non-
overlapping 30 seconds.

E. Comparison with the Benchmarks

In this part, we compare the results we obtained from
applying EmDMD to the epileptic data with some well-
known benchmarks that have been used commonly in the
past in the field of data processing. In this regard, we have
used Power Spectral Density and Hilbert Phase Correlation
to measure power versus frequency and phase correlation,
respectively. Although unlike EmDMD, Power Spectral Den-
sity, and Hilbert Phase do not take into account the spatial
information, we took the Power Spectral Density and Hilbert
Phase of every SOZ channel separately. Next, we took the
phase correlation among all the SOZ channels and performed
the sliding window approach, as we explained in section
II-D. Therefore, we measured the changes of Power Spectral
Density and Hilbert Phase Correlation among SOZ channels
covering the interictal, preictal, and ictal states for results
comparison. Figure 7 represents the Power Spectral Density
and Hilbert Phase Correlation changes across SOZ channels
in contrast to the results we obtained from the same data, using
EmDMD.

As shown in this figure, neither of the used benchmarks
represent significant changes before the start of the seizure in
this seizure file. In contrast, EmDMD results are changing
significantly in that duration. Every point in each plot in
figure 7 shows 30 seconds of data, and the blue and green
vertical lines in all the plots represent the start and the end
of the seizure, respectively. Since the benchmarks represented
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Density and Hilbert Phase Correlation among SOZ channels
covering the interictal, preictal, and ictal states for results
comparison. Figure 7 represents the Power Spectral Density
and Hilbert Phase Correlation changes across SOZ channels
in contrast to the results we obtained from the same data, using
EmDMD.

As shown in this figure, neither of the used benchmarks
represent significant changes before the start of the seizure in
this seizure file. In contrast, EmDMD results are changing
significantly in that duration. Every point in each plot in
figure 7 shows 30 seconds of data, and the blue and green
vertical lines in all the plots represent the start and the end
of the seizure, respectively. Since the benchmarks represented



46

JOURNAL OF LATEX, VOL. 14, NO. 8, DECEMBER 2019 5

Fig. 4: Representation of the extracted spatio-temporal features from the
interictal and preictal states. The two figures on top show the DMD power
of fourteen SOZ channels versus frequency, where the figures in the middle
represent the DMD phase correlation among the same SOZ channels. The
figures on the bottom show the activity of one SOZ channel in the same state
that the two features are extracted.

we extracted the averaged features, representing 30 seconds of
brain activity, from non-overlapping consecutive windows as
we go from the interictal to the ictal. To measure features’
changes in time, we used the L2-norm distance. Figure 5 and
6 show the changes in both EmDMD phase correlation and
power versus frequency overtime for two different seizure files.

Fig. 5: Representation of the changes of the extracted features using the sliding
window approach in one seizure file of one patient with focal epilepsy. The
figure on top represents the changes of DMD phase correlation among the
SOZ channels covering almost 40 minutes of the interictal state, the preictal
state, as well as the ictal and postictal states of the brain. The figure on
the bottom shows the changes in DMD power among the SOZ channels in
frequency, covering the same states as the top figure. In both figures, the
vertical lines represent the start of the seizure, and every point represents the
difference between two non-overlapping 30 seconds.

In these two figures, every point represents the difference
between two non-overlapping 30 seconds of data, and the
vertical line shows the start of the seizure. We realize that both
features change significantly, sometime before the beginning
of the seizure in both patients.

Although both features in figure 5 change smoothly until
sometime before the start of the seizure, figure 6 shows a false
positive in changes of the EmDMD power in the interictal
state. This false positive might resemble some artifacts that
existed in the recorded data. Since we have defined two

features in our feature metric, one feature can compensate
for the false-positive in the other feature. Therefore, we can
increase the specificity of the significant testing of our seizure
prediction.

In the next section, we use the changes of the extracted
features to form a dataset with two labels, representing the
interictal and preictal states. Therefore, we apply linear SVM,
as a well-known supervised classifier, to perform seizure
prediction on the formed dataset.

Fig. 6: The same representation as figure 3 for one seizure file of another
patient. The existence of a false positive in the power change plot in the bottom
figure can be compensated with relying on the changes of phase correlation
feature in the top figure. In both figures, the vertical lines represent the start
of the seizure, and every point represents the difference between two non-
overlapping 30 seconds.

E. Comparison with the Benchmarks

In this part, we compare the results we obtained from
applying EmDMD to the epileptic data with some well-
known benchmarks that have been used commonly in the
past in the field of data processing. In this regard, we have
used Power Spectral Density and Hilbert Phase Correlation
to measure power versus frequency and phase correlation,
respectively. Although unlike EmDMD, Power Spectral Den-
sity, and Hilbert Phase do not take into account the spatial
information, we took the Power Spectral Density and Hilbert
Phase of every SOZ channel separately. Next, we took the
phase correlation among all the SOZ channels and performed
the sliding window approach, as we explained in section
II-D. Therefore, we measured the changes of Power Spectral
Density and Hilbert Phase Correlation among SOZ channels
covering the interictal, preictal, and ictal states for results
comparison. Figure 7 represents the Power Spectral Density
and Hilbert Phase Correlation changes across SOZ channels
in contrast to the results we obtained from the same data, using
EmDMD.

As shown in this figure, neither of the used benchmarks
represent significant changes before the start of the seizure in
this seizure file. In contrast, EmDMD results are changing
significantly in that duration. Every point in each plot in
figure 7 shows 30 seconds of data, and the blue and green
vertical lines in all the plots represent the start and the end
of the seizure, respectively. Since the benchmarks represented
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prediction on the formed dataset.

Fig. 6: The same representation as figure 3 for one seizure file of another
patient. The existence of a false positive in the power change plot in the bottom
figure can be compensated with relying on the changes of phase correlation
feature in the top figure. In both figures, the vertical lines represent the start
of the seizure, and every point represents the difference between two non-
overlapping 30 seconds.

E. Comparison with the Benchmarks

In this part, we compare the results we obtained from
applying EmDMD to the epileptic data with some well-
known benchmarks that have been used commonly in the
past in the field of data processing. In this regard, we have
used Power Spectral Density and Hilbert Phase Correlation
to measure power versus frequency and phase correlation,
respectively. Although unlike EmDMD, Power Spectral Den-
sity, and Hilbert Phase do not take into account the spatial
information, we took the Power Spectral Density and Hilbert
Phase of every SOZ channel separately. Next, we took the
phase correlation among all the SOZ channels and performed
the sliding window approach, as we explained in section
II-D. Therefore, we measured the changes of Power Spectral
Density and Hilbert Phase Correlation among SOZ channels
covering the interictal, preictal, and ictal states for results
comparison. Figure 7 represents the Power Spectral Density
and Hilbert Phase Correlation changes across SOZ channels
in contrast to the results we obtained from the same data, using
EmDMD.

As shown in this figure, neither of the used benchmarks
represent significant changes before the start of the seizure in
this seizure file. In contrast, EmDMD results are changing
significantly in that duration. Every point in each plot in
figure 7 shows 30 seconds of data, and the blue and green
vertical lines in all the plots represent the start and the end
of the seizure, respectively. Since the benchmarks represented
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Patient name sex Seizure Onset Seizure Type #Seizures #Seizures used Sampling
Frequency

Study-027 F LT GA 6 5 500
Study-020 M RF CPG/GA 8 5 500
Study-022 F Unknown CP/GA 7 5 500
Study-038 M LF/LT CPG/GA 10 5 500

TABLE I: Epileptic patients’ information, whose data are used in this project, is represented. All datasets were recorded at Mayo Clinic, Rochester, MN; RF - Right frontal, LF -
Left frontal, LT - Left Temporal, CP - complex-partial, CPG - complex partial with secondary generalization, GA - Generalized atonic [21].

Fig. 7: Comparing the changes of EmDMD results with the changes in the
application of Power Spectral Density and Hilbert Phase Correlation on the
epileptic data for one seizure file. The figures on the left represent that
EmDMD features change significantly before the start of the seizure (blue
vertical line), where the figures on the right show that the changes of Power
Spectral Density and Hilbert Phase Correlation before the start of the seizure
are not distinguishable from the interictal state. Every point represents 30
seconds in all the plots.

changes in the preictal state for some patients, we did further
processing on the results obtained out of applying both the
EmDMD and the benchmarks to our dataset to compare the
seizure prediction results.

F. Patients

We analyzed ECoG recordings from four epileptic patients,
using the iEEG portal dataset [21]. All the chosen patients
have focal, secondarily generalized epilepsy, or both. We used
the seizure files with the least number of bad channels and
noisy data for more accurate analysis. The patients’ seizure
characteristics that are used in this work are summarized in
Table I. We used an overall 20 seizure files.

III. CLASSIFICATION AND PREDICTION RESULTS

We realized that the extracted features from applying
EmDMD to the epileptic data change significantly before
the start of the seizure. Since seizures of different or even
the same patients have different dynamical properties, we
first normalized the distance plots to bring the changes of
features in the range between 0 and 1. Therefore, we used
the normalized changes to form a dataset with labels 0 and 1,
representing the interictal and preictal states, respectively. To
do this, we first selected windows that contain ⌧ points from
random parts of the normalized distance plots, far from the
start of the seizure. Next, to compensate for the randomness
of the selected windows, we measured the mean of the selected
windows to form a ⌧ size window with label 0, representing
the interictal state. Moreover, to represent the preictal state,
we chose windows of ⌧ points from just before the start of
the seizure in all normalized distance plots. We labeled these
preictal samples with 1 in our formed dataset. Therefore, we
have a dataset with labels 0 and 1, containing ⌧ points of the

distance plots, where every point represents 30 seconds. We
used 5-fold cross validation while intuitively changing ⌧ from
1 to 9, to optimize ⌧ that works best for the classification
and prediction results. In our analysis, the optimum choice
was ⌧ = 3 points (1.5 minutes) for the EmDMD results and
⌧ = 5 points (2.5 minutes) for the results obtained using the
benchmarks. Finally, for equal comparison, we used ⌧ = 5
points (2.5 minutes) to form the two EmDMD and benchmarks
datasets. We performed classification using linear SVM to
classify the interictal and preictal states in both methods.
Figure 8 represents how changing the size of ⌧ affects the
5-fold cross validation score in both EmDMD and the used
benchmarks.

Fig. 8: Finding an optimum choice of ⌧ to form a dataset form interictal
and preictal classification, using 5-fold cross validation. We have changed the
size of ⌧ from 1 to 9 points and realized that ⌧ = 5 could be used for both
methods.

Having 40 distance plots from 20 seizure files of 4 different
patients, we used 30-70 test train split to apply linear SVM
for seizure prediction with the optimum choice of ⌧ = 2.5
minutes. Figure 9 represents the significant testing results to
classify the preictal and interictal states using both EmDMD
and the benchmarks with the latency of 2.5 minutes to predict
the seizures.

The significant testing terminologies that are used in figure
9 are defined as
Prediction Score: Score of matching the labels of the test set
with the classification results, using the build-in linear SVM
function in python.

Accuracy: TN + TP
TN + FN + TP + FP Precision: TP

TP + FP

Sensitivity: TP
TP + FN Specificity: TN

TN + FP

Where T = True, F = False, P = Positive and N = Negative.
As shown in figure 9, EmDMD prediction results have a

sensitivity of 91% and specificity of 98%, where the Power
Spectral Density/Hilbert Phase Correlation prediction results
gave us a sensitivity of 36% and a specificity of 97%.

EmDMD Benchmark
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Fig. 9: Significant testing results when we applied the linear SVM on the
labeled distance plots that we formed from the changes of both EmDMD
features and the benchmarks.

benchmarks with the latency of 2.5 minutes to predict the
seizures.

The significant testing terminologies that are used in Fig. 9
are defined as

Accuracy: TN + TP
TN + FN + TP + FP Precision: TP

TP + FP

Sensitivity: TP
TP + FN Specificity: TN

TN + FP

Where T = True, F = False, P = Positive and N = Negative.
In this work, sensitivity accounts for the true number of

preictal states that are captured (true number of predicted
seizures) over all the existing preictal states, and specificity
accounts for capturing the true number of interictal states
over all the existing interictal states. Therefore, sensitivity and
specificity are measures of True Positive and False Positive in
our algorithm, respectively. In addition, accuracy refers to the
ability of the predictor in true labeling the unseen new data
and precision shows the ability of our predictor to label the
preictal state on the unseen data as a preictal state and not an
interictal state. As shown in Fig. 9, EmDMD prediction results
have 97% accuracy in terms of correct labeling the new unseen
data and 91% precision to correctly label the preictal states
on the unseen data. The sensitivity of 91% when applying
EmDMD indicates the ability of this method to capture the
true number of preictal states, over the total existing number of
preictal states. On the other hand, 98% specificity represents
the capability of EmDMD in obtaining the correct number
of interictal states over the total existing number of interictal
states. Moreover, our results when applying the benchmarks
show that EmDMD outperforms the benchmarks in all aspects.
Even though in terms of extracting the correct number of
interictal states, EmDMD results are outperforming by only
1%, obtaining the right amount of preictal states represents
that the EmDMD results outperform the benchmarks by 55%
which is a significant difference. Therefore, we realize that

although both methods have low False Positives in terms of
predicting the seizures, EmDMD significantly outperforms the
benchmarks in truly predicting the seizure onsets 2.5 minutes
beforehand.

IV. CONCLUSION

In this work, we introduced a data-driven and model-free
dynamical tool, called Embedded Dynamic Mode Decompo-
sition, that could help us separate the preictal and interictal
states of an epileptic brain for seizure prediction. EmDMD
enabled us to extract the underlying spatio-temporal features
of the epileptic data in a linear setting in spite of the existing
nonlinearity in the epileptic system. We, therefore, used these
extracted features to distinguish the preictal and interictal
states using linear SVM for predicting the seizures for about
2.5 minutes beforehand. Finally, we compared our results with
the commonly used benchmarks, the Power Spectral Density
and Hilbert Phase Correlation, to evaluate our method.
We concluded that having a latency of 2.5 minutes for seizure
prediction using 10-fold cross validation, EmDMD results
were outperforming the Power Spectral Density/Hilbert Phase
Correlation results in distinguishing the preictal and interictal
states. Our results indicate that even though both EmDMD
and benchmarks work well in achieving the true interictal
states, EmDMD performs much better in seizing the true
preictal states. Therefore, the benchmarks have a low chance
to predict the seizure onsets, a few minutes before they
occur. The intuition behind these results is that in EmDMD
algorithm we automatically focus on the most variance in
the dynamics of an epileptic system to capture the features.
Whereas, the benchmarks analyze the whole epileptic system
without relying on the most energetic part. The reason that
EmDMD can better capture the preictal states might inform
us about significant changes in the high variance part of the
underlying system from interictal to the preictal states, that
are obtained by EmDMD but not the benchmarks.
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Seizure prediction

• promising data analytic tools


• directed information, mutual information in frequency (coherence)  


• coherence graphs, directed graphs, EmDMD, SVM


• patient specific


• real-time processing


• non-Gaussian and nonlinear



Control

• spatiotemporally focused modulation


• data driven model of dynamics 


• control model

Target

Xm+1 = AmXm

Xm+1 = AmXm + BmUm



Ultrasound and electromagnetic modulation

• optimized beamsOptimized Beamforming
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Take-home message

• learning from non-Gaussian and nonlinear data


• control and modulation


• non-invasive or minimally invasive
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Projects

• optimization of MU-MIMO wireless network (su) 

• non-invasive deep brain stimulation (ahsan, fan) 

• wireless multisite modulation of the diseased heart (cosentino, banta)


• real-time closed-loop modulation for depression (erfanian)


• learning and socialization in primates (yellapantula) 

• understanding olfactory circuit (jyoung)


• modulation of epileptic circuit (moghaddam)


