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Course Outline

* 1. Preliminaries

« 2. A probabilistic approach (books by Hajek and Mackay)
- Statistical characteristics of data
- Statistical analysis of the performance

- 3. Data (book by Hajek)
+ Continuous time

« Discrete time



- 4. Frameworks for learning from data (MacKay)

« Parametric models

* Non-parametric—data driven



5. Estimating key statistical metrics from data (Bishop 2.4, 2.5)

 Estimating probability mass function

* Density estimation

* Plugin estimators

» Kernel density estimation (KDE)

« K nearest neighbor (k-NN)



Set |

- 6. Data representation (Bishop 8)
+ Graphical modeling
 Directed graphs
- Bayesian network
- Undirected graphs
» Markov random fields

 Factor graphs



1. Preliminaries

* Engineering is all about designing a system with constraints

* or more often, “improving” the functionality of a physical system within
some practical constraints

* The system could be anything from a bridge to the space station to the world
wide web

- Examples of physical systems could be our environment, a biological system,
or a factory

» The constraints could be the form factor, the cost, power, time, among others



- Engineers use fundamental tools like mathematics, physics, chemistry, and
economics

 For years their starting point has been building a model
* Model of the system
* Model of the constraints
+ The impact of their work has been limited by the accuracy of their model

- The model is often also used to evaluate the performance



« Despite possible limitations of models we have thousands of engineering
marbles

- Golden gate bridge
» World wide web
» Cellular LTE

 Robots



- “Essentially all models are wrong but some are useful” G. Box (1987)

« A move from model based engineering to data based engineering

- Can we engineer based on data?

A precursor is “inference” where we try to find the most appropriate
explanation for data



- Over the last decade there has been a data deluge

* Incredible connectivity

- Cheap storage and computational machines

* Availability of sensors

» There are many positives and negatives to the explosion of data

* Let’s only focus on the positives
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 Learning from data

A probabilist approach

- Data could be noisy

* Model could have inherent uncertainty

* |nsufficient size of data set

A probabilistic inference may be desirable

« Example: 80% chance of rain
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2. A probabillistic approach

* Input space = feature space = signal domain X
« QOutput space = response space = signal range y
« Examples:

- Classification

X =Rand Y = {0,1}

« Estimation

X =Rand Y =R whereY =¢g(X)+ 7
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- In many systems and problems, input ( data ) denoted as X and output by Y
- Assume a joint distribution of (X, Y) as FX,Y
- Cumulative distribution function (CDF) and joint CDF

Fx(a) = P{X <a}and Fxy(a,b) = P{X <aand Y < b}

 Probability density function (PDF) and joint PDF if variables are continuous

valued
Fx(a) = [Z fx(z)dx
Fxy(a,b) = [*_[*_ fxy(z,y)dedy
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- For discrete data we define probability mass function (PMF)

Fx(a) = Z px (x;) where px (z;) = P(X = x;)

T;<a
- Joint probability mass function

Fx y(a,b) = S: S: px,y (i, yj) where px v (zi,y;) = P(X = 2;,Y = y;)

r;<ay;<b
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- Conditional distribution and conditional probability mass function
FY|X b‘xz E :pY|X y]‘xz)
. <b

- If X and Y are jointly discrete

PX)Y (jS? ?Jj)
PX(SI?z')

PY|X(%’\$7L) —
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- Conditional distribution and conditional density
Fy | x(y|z) and Fy | x (b|x) = f fyx (y|z)dy

- If X and Y are jointly continuous then

fyix(yle) = fX];;(é’)y)
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« The expectation operator

= [p9(x)dFx = [, 9(x)fxdw
Elg = Jr9W)dFy | x = [ 9(y) [y xdy

Elg(X,Y)] = [ 9(z,9)dFxy = 5 9(x,y) fx ydrdy

- Similarly if X is discrete

Elg(X)) = [ g@)dFx = 3 glapx (s



- X and Y are independent if
nyy(a, b) — FX (&)Fy(b) Va and b
or fx,v(2,y) = fo(z) fy (y) Yo and y

« Correlation between Xand Y

Rxy = E[XY*] and Cxy = E[XY*] — E[X]E[Y]"

 Mutual information between Xand Y

I(X;Y) = [qe fx.y log(22E0 ) dady
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- X and Y are independent if
FX,}/(CL, b) — FX (a)Fy(b) Ya and b

Oor PX,Y(ZI%, yj) — px(%)pY(yj) Vi and j

« Correlation between Xand Y

Rxy = E[XY*] and Cxy = E[XY*] — E[X]E[Y]"

 Mutual information between Xand Y

I(X§ Y) — Zi,j pX,Y(CIZ'@', yj) lOg PX,v (Ti,Y;)

px (z:)py (¥j)
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« Correlation coefficients

Cx v
_ < — ) <
L<pxy VVar(X)Var(Y) — :
 Mutual information
0<I(X:;Y)

 All these measure relationship among variables

 Correlation, independence, and mutual information

20



- Example 2.1: If X and Y are independent
.Then Cxy =0and I(X;Y)=0
» If X is zero mean and has a symmetric density and Y is squared X then
- Are X and Y independent?
- Are they uncorrelated?

* |s their mutual information zero?

21



- Mutual information seems to be a powerful metric of dependency

* The origin of mutual information dates back to late 1940s.

- It is based on the concept of entropy from thermodynamics and statistical
mechanics from mid 1800s.
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- We can define a triple probability space to describe uncertainty of our system
(2, F, P)

- The outcome of the experiment  w € ()

» The universal set of possible outcomes )

. A relevant event A as a collection of outcomes of interest W € A

- The probability of an event P(A)

- A random variable X:(Q,F)— (R,B(R))
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- Information content of an event — logQ(P(A)) where A € F

» Average information content of a discrete random variable
H(X)=—) px(z;)logpx(z;)
)

* It is the entropy
H(X) >0

- Differential entropy of a continuous random variable

hX) = —/fX(f) log fx (z)dx
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- Differential entropy can be negative.
- It is best used comparing h(X) and h(Y), hence the concept of differential

- An alternative, formulation

I(X;Y)=H(Y)-HY|X)=HX) - H(X|Y)

I(X:Y) =h(Y) — h(Y|X) = h(X) — h(X]|Y)

* Yet another formulation based on a distance measure
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- The “distance” between two probability measures (PDF or PMF)

« Kullback-Leibler distance

Drr(fx|lgx) Z/fx(iﬁ)logg

Dgr(fllg) =0

I(X;Y) = Drr(fxyllfx fr)
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+ Recall inference is a critical outcome of many problems in data analysis

- In all inference problems, we have an objective, therefore, we have loss and
risk
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« Loss function

/Y x)Y—=R

« Examples are

if Y ={0,1} then £(y,y) =11
if Y = R then £(y,9) = (y —9)* o
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* Risk of inference

 Finding the output corresponding an input

g: X —)

» The performance of a given mapping

R(g) = E[L(Y, g(X))]

* The optimum mapping

R* = infy R(g) = infy E[((Y, g(X))]
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« Example 2.2

« The connection between estimation and information theory

- Assumedata X = (X1, XQ, JEI aXn)T

- Data is assumed independent and identically distributed with probability
mass function p . (x)

* The objective:

* Find a distribution for the data that maximizes the likelihood of the data
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 Find the probability mass function that generated the data, that is,

px, for observed (z1,x2,...,x,)

- Can data provide a mechanism to find the underling distribution that
generated the data?

* Find the model among the set of possible models that maximizes the
likelihood of generating the data.
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« The maximum likelihood estimate of the probability among a set is

arg max X) = arg max lo X) = areg min — lo X
ngQQX( ) g may g qx (X) gmin g gx (x)

g Is a possible probability mass function that could have generated the data
+ g is the probability that x = 0

- An appropriate loss function could be the negative log loss
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 The loss function

Uy, 9) = £(q, X) = —log qx
* The risk

R(q) =El(y,9)] = Epll(q,X)| = —Epllog ¢x )|
=Dk (pllq) + Ep[L(p, X))
=Dgr1.(pllq) + R(p)

* The risk is minimized with g =p

* The minimum risk is

R* = Ep[l(p, X)] = H(p)
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A specific case is binary independent identically distributed sequence of data
X = (X1, Xo,...,X,) with X; € {0,1}

- G d truth
A px(x) = [px; (z:)]"

* Find a distribution for the data that maximizes the likelihood of the data

=(0,1,0,0,0,1)

+ Since the data samples are independent

Arg max gx (x) = arg max H qx, (z;)
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 Since data are binary

L [ (n—1)
arg max X) = arg max 1 —
g ma gx (x) gqe[m]q( q)

- The maximum likelihood estimate of the probability g is derived

d(g'(1 — q)"=0)

— 0
dq

[

- The most likely probability is ¢~ = —
T
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+ In the specific case of X = (0,1,0,0,0,1)
 The ML estimate is q* — 2/3

« Obviously the ground truth is not known.
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3. Data

» Temporal observations X1, Xo, ..., X,
» Temporal relationships RX,,;,XJ.
- Spatial observations X(l), X(z), o ,X(d>

- Spatial relationships RX(k))X(l)

37



« 3 illustrative examples of data
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Intracardiac Electrogram Recordings — Catheter
Placement
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Intracardiac Electrogram Recordings — Catheter
Placement

High right atrial

His™ bundle

Coronary sinus

Right ventricle apex

* William His, Junior, a Swiss cardiologist, 1893 43



A very different example,

* Voltage sensitive dye
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Neuron number




- Often recorded data are continuous time signals

XP(w), X2 (w), ..., X' (w) V¢t and w € O

- where w 1S an outcome of the random experiment and ¢

1s the set of all outcomes

« Discrete time data is often much more desirable

|t can be stored

* It is easy to analyze and process with digital filters
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+ Continuous time signals can be represented with discrete time data
« With no loss of information
X (w) Yt = X1 (w), Xo(w), ..., Xn(w)
- Sampling

 Projection
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- Sampling and reconstruction

—+ o0 . _n
Xi(w)= ) XnT(w)SH;(VZ[i nT)TD

T
- Where W is the bandwidth of the power spectral density and 1= W
- The power spectral density of the process is SX (f) — JT{RX (7')}
* The autocorrelation is RX (7') — E{Xt+TXZ<}

- The data signal is assumed to be wide sense stationary (wss)
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- Example 3.1 : Assume that the process is ideally band limited, that is,

- Do if f e [-W, W]
— 9) ) )
Sx(f) <\ 0 otherwise
* In this example,
N() SiIl(WT)
Rx(r) = 2T W
-

* Where 1 = W

+And B X, r X' | =0iftm #n

50



- If the data signal is wide sense stationary

« That is,

Rx (1) = F{ X, X, } V7 not a function of ¢

« The discrete samples carry all the information in the data signal

oy X, Xo, X, Xory oo, Xyt

* Since we have

—+ o0 . _n
Xi(w) = ) XnT(w)SH;(VM(;[t_ nT)TD
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« The discrete samples carry all the information in the data signal

X Xo X Xora o X

- These samples will be uncorrelated (independent if the signal is Gaussian) if
the spectrum is ideally band-limited.

* No need to carry the sampling period in the notation

X =(X1,Xo,...,Xn)"
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- In general, for band limited processes, the samples are correlated.
« The samples can be made uncorrelated using whitening linear filters.
- X =(X;,X X,)"
 Define zero mean process — ( Ly <2245« n)
» The n x n covariance matrix 2.y = F [XXT]
* It is square

* non-negative definite

 Hermitian matrix
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» The covariance matrix 2x = E[XXT]

- If the covariance matrix is positive definite

. Linear transformation Y = AX

* The matrix A could be an m x n matrix and Y will then be m x1

—
* Then, the m x m covariance matrix of Y is ZY — AZXA

f Ny =CC"thenY =C"'"XhasXy =1

o4



« Example 3.2
Yy = AN A"
Y =CC'"thenY=C"'Xhas Xy =1

4 12 —16 2 0 0 2 6
12 37 -43|=| 6 1 0|0 1
—16 —43 98 -8 o5 3 0 O

1/2 0 0 |
Y = —3 1 0 | X

19/3 —5/3 1/3



« Example 3.3

Original Data

o6



« Example 3.3

- One interpretation

 Different elements of the original data are correlated

Original Data

Whiten:

- if one element is 1.2 it is very likely that the other element is close to

1.

- When data is whitened, then in the processed data, if one element is

1.2 the other one is still widely distributed

« Still no information is lost
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Sampling “would not work” when the random signal is not wide sense
stationary

- Even if wss, the samples could be, often are, correlated
Karhunen-Loeve expansion of a more general random signal

Rx(t, S) — E[XtX;k]

The autocorrelation

+00
/ Rx (t,s)an(s)ds = Ao (t) Vit

— OO

Eigenfunctions of the autocorrelation function
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- Example 3.4

* A concept analogous to eigenvectors of a matrix

Ax = \x

X1 = )\1X1 and

— DN

-
2_

— DN

DO —

,)\1:3andX2:

2
A= 1
X2:>\2X2
_1_
__1_ 7>\2:]~

* The eigenvectors are orthogonal since A is a symmetric matrix

< X1,X9 >=10

DO —
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« Analogous to eigenvectors, eigenfunctions are also orthogonal

—+ 00
/ oy (), (t)dt = Apon.m

(1 if n=m,
| 0 otherwise

* It is intuitive to expect that the projection of the data signal on these
eigenfunctions would be orthogonal and uncorrelated if the random process
was zero mean.

60



 Then, we can write

=\, Xi(w)ay, (t)dt
oy, (t) = B X 27| Vit
oy (), (t)dt = A\pdpm
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4 .
o Where 6 _ < ]_ ].f T, = m7
e | 0 otherwise

+ The information is represented in  Zg(w), Z1(w), ..., Zp(w),. ..

* The structure is represented in (¥ (t), Q1 (t), R (t), e

« All because we have

+00
Xe(w) = Z o, (1) 2 (w)
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- Similar to sampling

+ 00 :
Xi(w) = Z XnT(w)Sm(W[t —nT))

W(t —nT)
nN=——00
- where samples carry all the information
/ >
Xt(w) °°°7X—T7X07XT7X2T,-..

sampling
rate 1/T

anT,...
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 Projections on eigenfunctions carry all the information
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- Assume that the data is discrete time stochastic process

- Parametric models with a few parameters

« Gaussian, linear, Poisson, ...

« Data driven—“model free”

* Discrete valued time series

« Continuous valued time series
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 Assume the data is

L= (Xl,XQ,...,Xn) where X; € R

» Then the mutual information between two time series Xi”’ and Yln

« The dependency of one set of data with another

66



« Example 3.5
- Two small sets of data and their dependency
[(X1,X0;Y1,Ys) = 1(Xy, X0, Y1) + (X, Xo; Ya|Y7)

 Where

[( X1, X0 Y7) =1(X1; Y1) + [(Xg; Y11.X0)

 Recall that

I(Xl;Yl) — h(Xl) — h(Xl‘Yl) — h(Yl) — h(Y1|X1)

67



« Example 3.6

» Lets start with dependencies between two single random variables X and
Y.

68



« Example 3.6
- Assume X and Z are each a Gaussian random variable and independent

- Themodel Y=X+Z, thatis, Y is a noisy but direct observation of X

I(X;Y) = h(Y) — h(Y]X)

(Y)
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« Example 3.6
- Assume X and Z are each a Gaussian random variable and independent

- Themodel Y=X+Z, thatis, Y is a noisy but direct observation of X

I(X;Y) = h(Y) — h(Y]X)
h(Y)
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« Example 3.6
- Assume X and Z are each a Gaussian random variable and independent

- Themodel Y=X+Z, thatis, Y is a noisy but direct observation of X

I(X;Y) = h(Y) — h(Y]X)

71



- Note that both X and Z are Gaussian and that h(Y|X) — h(Z)

teo 2 o2 1
h(X) = — e
( ) oo \/27'('0'%(6 Og(\/2W0§<6

—LEQ/Qch)daj

I(X;Y) =h(Y) - h(Y|X)

72




- Note that both X and Z are Gaussian and that h(Y|X) — h(Z)

1 2 /62
h(X)= —Fx|log - log e X /29%]

\/27TO'X

I(X;Y) =h(Y) - h(Y|X)

73



- Note that both X and Z are Gaussian and that h(Y|X) — h(Z)

1 E[X? 1
h(X) = 5 log 2moy 2[0 | loge = —[log 2705, + log €]

I(X;Y) =h(Y) = h(Y|X)
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- Note that both X and Z are Gaussian and that h(Y|X) — h(Z)

1 1
h(Y) = 5 log 2me[o% + 03] h(Y|X) = 5 log 2meo

2
[(X;Y) = %k)g (1+ 2X)

2
Z
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- For comparison, let’s examine the correlation between X and Y

Rxy

76



« For comparison, let’s examine the correlation between X and Y.

* Recall

Rxy = E[XY*|and Cx y = E[XY*| — E[X]E[Y]*

* |In this example,

Rxy =E[XY*|=EX(X+ 2)*| =E[X(X + 2Z2)] = 0%

- Compared to,

1 2
I(X;Y) = S log (1+ 25)
A4
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 Back to time series

Xf’ — (Xl,XQ, “ . ,Xn) where Xz c R

» Then the mutual information between two time series Xi”’ and Yln

I( ?§Y1R)ZZ[( ?5Y7:|Y1i_1)
1=1
= [(X{; Y1) + I(X7; Ya V) + T(XT5 Ya| YY) + . ..

« Also

I(XT;Y") = h(YT") = h(Y{"[XT)

/8



- Mutual information of two time series measure general “dependence” of the
two time series as a whole

* No temporal information, no influence, nor causality

- It is often critical to measure causality.

* One data forecasting or influencing another

« Stock market

 Transportation

« Economics
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to guess that X causes Y

it is easy

* |In this example

................

......
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* In this example it is not easy
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U.S. centsiKg
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- Grainger causality

» If signhal X causes signal Y then passed values of X should contain
information that helps predict Y above and beyond the information
contained in past values of Y alone

- Granger is defined based on a linear model assumption where Z is noise
Yk_|_1 — CLOYk —+ alYk_l —+ ...+ boXk —+ lek:—l 4+ ...+ Zk

Xg41=coXp+C1Xg—1+...+doYr +d1Y—1+...+ Z;C

83



« Example 3.7

- If the relationship were based on a linear autoregressive model

Y1 =0.1Yr + 02X, + Zg

« Does X cause Y or does Y cause X?

« Past and current values of X can help better predict the future values of Y

84



Yk_|_1 = aon -+ alYk_l + ...+ boXk -+ lek—l + ...+ Zk

Xgr1=cXg+ 1 Xg1+...+doYs +d1Ye—1+...+ Z,{C

 Testing hypotheses

- If the coefficients, b’s, are zero then X does not Granger cause Y

- If the coefficients, d’s, are zero then Y does not Granger cause X

- Granger causality quantifies the impact of coefficients b’s and d’s.
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Yk_|_1 = CLOYk -+ alYk_l + ...+ boXk -+ lek—l + ...+ Zk

Xgr1=cXg+ 1 Xg1+...+doYs +d1Ye—1+...+ ZI{;:

- Test the hypothesis that setting b’s to zero increases the residual variance of
estimating
(0)

o2
C(;(X — Y) = log 4
03 (b)

(0)

2
X
2
% (d)

O 4
o)

C(;(Y — X) = log

86



« Shortcomings of Granger casualty

- The data is assumed to be linearly dependent in time.

 Autoregressive

« The two data sets are assumed to be linearly dependent

 The data sets are assumed to be Gaussian

« Stationarity is assumed

- The impact of using Granger on non-stationary data is not known
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 Recall that mutual information does not capture temporal information

[(XT5Y") =) (X7 Y|y
1=1
= I(X" V) + I(X? Y5 |Yy) + I(X] Ya|YE) + ..

* A careful adjustment
I(XT = Y") =) I(X[;Yi[Y7™)
1=1

= I(X1;Y1) + I( X3, Y5 V7)) + I(XP; Y5|YE) + ...

88



 Directed information is a measure of causality in relation between X and Y

» It is a universal quantity measuring

* influence

* predictability

* information flow

89



Example 3.8

- with i.i.d.

Y, =X, + 4,

X,, ~ Gaussian(0, o5 )

7 ~ Gaussian(0, 0%)
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- with i.i.d.

iIndependent

/v

Y, =X, + 4,

X,, ~ Gaussian(0, 0%)

7 ~ Gaussian(0, 0%)
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X,, ~ Gaussian(0, 0% )

Z,, ~ Gaussian(0, 0%)

2 2
0% 1 0%

-0+ — log(1 - |
0'%) ‘|'2 og( O_%)
0.2
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X,, ~ Gaussian(0, 0% )

Z,, ~ Gaussian(0, 0%)

I(X? = Y") =) I(X;Viyy ™)
1=1
= I(X1; Y1) + I(Xf,}//zﬁé(?ff, Y3[Y7') +
:](Xl;Yl ——](Xl,Y2|Y1)—|— (XZaYQ‘YlaXl)_I_
L ?1 02) §+11 (1’/ 02)
— — 10 I I — 10 I I .
2 SV T2 2 ST o2
2
n o)
— _log(1+ —=
2 Og( O_%) 93



X,, ~ Gaussian(0, 0% )

Z,, ~ Gaussian(0, 0%)

- The normalized, per time, mutual information and directed information

Y, =X, + 4,

1 2
I(X = Y)=I(Y = X) = I(X;Y) = 5 log(1 - Z;f)
Z
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Example 3.9

- With i.i.d.

Yn — Xn—l + Zn

X,, ~ Gaussian(0, o5 )

7 ~ Gaussian(0, 0%)
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- With i.i.d.

iIndependent

/v

Y, = X1+ 4,

X,, ~ Gaussian(0, 0%)

7 ~ Gaussian(0, 0%)
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X,, ~ Gaussian(0, 0% )

independent  Zn ~ Gaussian(0, 0%)

/

Yn — Xn—l + Zn

I[(XT = Y") =) I(X;;Vi[yy ™)
1=1
= I[(X ;Y1) + (X7, Y5 |Y)) + I(XP; Y5|YE) + ...
:](Xl;Yl) ——I(Xl;Y2|Y1)—I—](XQ;YQ‘Yl,Xl)—I—...
1 | O-‘%( | 1 | O-g( |
:O—|—§log(1 | a%) | O—|—§log(1 | a%) |
2
n o
= - log(1+ =) ,



X,, ~ Gaussian(0, 0% )

independent  Zn ~ Gaussian(0, 0%)

/v

Y, = X,,_1+ 4,
I(X]T = Y") =) I(X{; Y[y
i—1
= I(X1; Y1) + I(X7; Yo Y1) + [(X7; Y3|Y)) +
= I(X1; Y1) + [(X1; Yo Y1) + I(Xo; Yo| Y7, X1) +
0‘/11 1'g'041 s O
— —|—§Og( IO'%)I —|—§Og( IO'%)I
>
n o
251()%(1 )2() o5



X,, ~ Gaussian(0, 0% )

Z,, ~ Gaussian(0, 0%)

Yn — Xn—l + Zn

1Y) = X7) =) 1Y XX
1=1
= I(Y1; X1) + T(YE Xo | X)) + I(Y7; Xs| X2) + ..
— [(Y1; Xl) T I(Y]_;XQ‘X:[) -+ [(YQ; X2‘X1, Yl) + ...
=04+0+...

99



X,, ~ Gaussian(0, 0% )

Z,, ~ Gaussian(0, 0%)

Yn — Xn—l + Zn

|
\'s
—~ |l
=<
,E<
N—
I
v\.
~/~

Y7 Xo|X0) + I(Y7; X3 XT) +
— [(Yl;Xl) T I(Y]_;XQ‘Xl) -+ [(YQ;XQ‘Xl,Yl) + ...
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X,, ~ Gaussian(0, 0% )

Z,, ~ Gaussian(0, 0%)

* Recall
Yn — Xn—l =+ Zn
« then
1 o2
I(X =-Y)= =log(1- ng)
A
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* In these two examples Granger causality and directed information result in
similar measures

« Since time series are

* Linearly related

« (Gaussian

- It is not clear if Granger causality is the right metric in the coffee price
example since the linearity model may or may not be valid.
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* A nonlinear model
Vi = 51 X + B X1 + Zi
* where Z is Gaussian noise
- Can X help predict Y?
« Can Y help predict X?

« How about in these cases?

Yi=X4+Zyor Yy, = X7, + 7y
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* A nonlinear model

Vi = 1 X, + B2 X + Zi

= 0.5 ]
 where Z is Gaussian noise B0 € (X —Y) /x
= /(Y — X)
£ BeGC (X = Y)
N WGC (Y = X) X
E 0.25|
~
(P
<P
=
=
S
O

(b) B2 =1 — B



 Directed information is a measure of causality in relation between X and Y

» It is a universal quantity measuring

Influence

Predictabllity

Information flow

Another important metric of relation between time series
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 Coherence

* Another concept measuring relationship between two data sets
« Consider two zero mean random vectors Xand Y
 The cross correlation is defined as

RX,Y (m, m/) — E[XmYnt’]

- If the series are jointly wide sense stationary

RX,y(m, m’) — Rx,y(m = m’)
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» The cross power spectral density is defined as

Sx,y(f) = F{Rxy(k)} = > p_ Rx,y(k)e?* ™/

 Recall autocorrelation of a time series is

Rx(m,m') = E[ X, X* ]

- If the times series is wide sense stationary then
Rx(m,m’') = Rx(m —m/)
« The power spectral density is

Sx(f) = F{Rx(k)} = 1o Rx(k)es?™/
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* The coherence at a given frequency between two time series is defined as

_Sx.v ()]
CX,Y(f) — SX)({f})/SY(f)

« The coherence estimates the extend that Y can be predicted by X using
optimum linear estimator

+ It can be shown that 0<Cxy(f) <1

* If Yis a noiseless linear function of time series X, i.e., Y =h * X, what is the
coherence between X and Y?
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 |If Yis a linear estimator of X, then Y = h * X with no noise then
Sx,y(f) = H(f)Sx(f) and Sy (f) = [H(f)|*Sx(f)
- And the coherence is 1.

* Any nonlinearity or noise in the system will reduce the coherence.

« Reduction in information or estimation accuracy due to nonlinearity or noise

at a given frequency
1 —Cx,y(f)
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« Example 3.10
* Alinear system where Y =h * X + Z where Z is noise

 The filter is a 33 tap bandpass filter between [0.15, 0.35] normalized
frequencies

- How effectively can X at frequency 2.5 be estimated from Y?

H®)I" 4

f

110
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« Example 3.11

» Two nonlinearly related signals, assume f =4 Hz

X, =Acos(2rfi+0)Vi=1,2,...,n
Y, = X2+ Z,

- Are X and Y coherent at frequency 4 Hz?
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- Mutual information quantifies relationship between data sets
* Ignores relative timing and causality

* Ignores frequency content of the data

[(X{;Y)") = Z[( ?3Y7:|Y1i_1)
i=1

= I(X7; Y1) + I(XT; Yo Y1) + T(XT; Y5]Y7) + ..
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 In many scenarios the frequency content of the data is a critical element in
the analysis or inference

« Data from music

 Auditory neurological data

* Neurological data in different frequency bands have different significances

* Alpha, theta, beta, gamma, and high gamma bands
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« Mutual information in frequency

MIxy(fi, [;) = 1(dXy,;dYy,)
- That is, mutual information between Fourier transforms of the two time series

1
Xi= [ ernitax,
0

1
)/i :/ 6j27Tifdf/f
0

- Herei=1,2,...,n
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1
Xi = [ ermifax,
0

= (X1, Xo,...,X,) is the recoded data and
X ¢ for f € ]0,1] is spectral representation of data

- Note that mutual information can be computed for any data set with time as
the index or frequency or space.

* It has been shown that when X and Y have a linear relationship then

MIxy(f,f) = I(dXﬁdi/f) = —log|l — Cx v (f)
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« Note that coherence was defined for linear systems as

1Sx v (f)|°

Cxy(f) = 5575y (h

- Since it is related to mutual information in frequency it can be generalized to

any data sets

M]X’y(f, f) = I(de; d?f) = — log[l — CX’y(f)]

Time (s)

DFT

— X;,Y; > fxy > HX,)Y) = [(dX;dY)
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* Note that for range of frequencies, similar to time periods, the mutual
information in frequency is defined as

MIxy(f,f") = I(dX]": d?f";”)
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« Example 3.12

* Alinear system where Y =h * X + Z where Z is noise

 The filter is a 33 tap bandpass filter between [0.15, 0.35] normalized
frequencies

 The mutual information between X and Y

08

04+

-©-True Value
=KDMIF
-O-NNMIF

~ / OO 118
0 0.25 0.5




« Example 3.13

* Two nonlinearly related signals, assume f =4 Hz
X, =Acos(2rfi+0)Vi=1,2,...,n
2
Yi = X} + Z;

0

4.4

4

12

16
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« Example 3.14

* An experiment with no known ground truth

- A visual task, one trial, one monkey, non-matched (rotated image)

Iime »——>

. TARGET ' . TEST

FIXATION | | \raGE E . IMAGE |

DECISION TIME

Rotated?

13s 1.6s ~3.6 seconds per trial
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* Local field potential recordings from visual cortex about 500 trials
* Increase in Coherency between recorded time series

» Theta band (3-8 Hz) Monkey 2 Learning Day

0.8
: - Match
- Matched trials —— Nonmatch
0.6}
« As the 2nd scene is processed CEU
204
)
-
|_
0.2F
O 1 1 1
0 0.5 1 1.5

Time (s) .



4, Frameworks for Learning from Data

» Parametric models
« Accuracy of the model
- Complexity of the model
* Linear
- Gaussian

 Poisson
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- Non-parametric, data driven, model free, universal, ...

* |ssues

* The size of the data

* Relevance of the data

- Overfitting

 Merits

* Not limited by the model
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* (Generate sufficient amount of data

* to explore relevant features of the physical system

* to use the features to manipulate the system

| ! /

S

\

\
\

\
W‘E,uu:bL e

LEARNV




5. Estimating Key Statistical Metrics from Data

« A critical step for
 Model based
- Data driven

» Estimating correlation, dependencies, coherence, and other measures
among recordings, I.e., time series
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 Entropy of discrete valued random variables

H(X) = — ZPX(%’) log px ()

 Estimating the entropy

* Plugin estimator

A
. # occurrences of symbol a

H,(X)=— Zﬁa log p, where p, =

a=1

n

ZT; E{l,Q,...,A}
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- The random variables are assumed independent and identically distributed
(i.i.d)

* |t can be shown that

B{[,(X) ~ H(X)[*} = O(-)
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« Example 5.1
* The binary random variables.

- The random variables are assumed independent and identically distributed
(i.i.d)

A

H,(X) = —pologpo — p1 log p:
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A

- The binary random variables. H, (X) = —po log —p1 log p1

R # of occurrences of symbol 0
Po =

n

A # of occurrences of symbol 1
P1 —

T
« Example with

x = (0,1,0,0,0,1)

. 2. 3 1
H,(X) = §10g2 | 31093
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« Example 5.2

Aplysia californica
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« Example 5.2
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Neuron number

Example 5.2
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- What are the statistical properties of firing of each neuron?

 Are the spikes in different neurons related?

Is one neuron’s spike excites another neuron to spike?

Is one neuron’s spike inhibits another neuron from firing?

What is the anatomical connectivity graph of these neurons?

What is the functional connectivity graph of these neurons?
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* Neurons do not independently fire and their spike probabilities are not
iIdentically distributed

+ The stimulus and the functionality is coded in the spike pattern of a
population of neurons
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* In many physical systems, the data symbols in time are not independent or
identically distributed.

px,;(z) # px; () or px,|s(z) # px, ()
- Here s is the context, that is the past observed values

 Krichevsky-Trofimov (KT) estimator is a powerful technique to estimate
probability of sequences.

* For discrete valued data

- Data driven with no assumptions on independence and identically
distributed symbols
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probability of

1 O this symbol?
0 /N0 l
- E le 5.3
TP 1 010010107..

- Assume binary data O 1

1/ O

past values:
O / the context
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« KT on a tree

probability of

1 0 this symbol?
N 1 O l
1 01001010...

1/001 I

past values:
O / the context
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probability of
this symbol?

l

01001010...

|

past values:
the context
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probability of
this symbol?

l

01001010...

|

past values:
the context

that 1/2 fudge parameter times the size of the alphabet

0+1/2
p(X3=0|X, =0, Xy = 1) = + //1/2
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probability of
this symbol?

l

01001010...

|

past values:
the context

how many times we have seen 0O given this context?

N

0+ 1/2
p(Xg :O|X1 :O,XQ — 1) — /

0+1

—1/2
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probability of
this symbol?

l

01001010...

|

past values:
the context

how many times we have seen this context”?

0+1/2
Xa=0lX; = O,X — 1\ —1/2
p( 3 | 1 2 ) 0 1 /
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probability of
this symbol?

l

01001010...

|

past values:
the context

how many times we have seen 0O given this context?

\o+1/2

X, =0X1 =0, Xo0=1,X3=0) =
p(4 ‘1 g <X 2 y <23 ) 0—|—1

= 1/2
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probability of
this symbol?

l

01001010...

|

past values:
the context
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- After a few steps, a familiar context appears
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probability of
this symbol?

l

01001010...

|

past values:
the context
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probability of
this symbol?

l

01001010...

|

\O
/ past values:
.1

the context

how many times we have seen this context?

1+1/2
p(X9OX607X717X8)\2+ / :1/2
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 |f data was assumed to be i.i.d.

- Best estimate of probability of zero = 5/8

« Without i.i.d assumption and with our context

- Best estimate of probability of zero = 1/2

 |f the context was a little different—in one value

- Best estimate of probability of zero = 1/4
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probability of
this symbol?

l

01011010...

|

\O
/ past values:
.1

« Example 5.4

the context

how many times we have seen this context?

0+ 1/2
p(X9OX607X717X80)\1_|_{ =1/4

151



0
%

p(X =0[010) = 1/4 0

probability of
this symbol?

l

01011010...

|

past values:
the context
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0
J/’ 0

p(X =0[010) = 1/4 0

probability of
this symbol?

l

01011010...

|

past values:
the context
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O
probability of
y 0 this symbol?

X =01010) = 1/4 0 l
01011010...

1/ O I
p(X = 0[101) = 1/2 past values:
O / the context

p(X = 0[111) = 1/2A
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A universal method to compute the joint probability

A

PX = an|X§”_1)pX§"_1) — an|X£”_1)pX(n_1) |X§”_2)pX§"_2)

— an|X]§n_1)pX(n_1)|X§n_2) © e pX2|X1pX1

+ Where X7 = (X1, Xo,...,X,)
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» The density estimator
* The KT algorithm
* The tree structure
- Converges to the true density
* Plugin estimator

HX)=- ) pxlogpx
ie{l,....n}
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 Entropy of continuous valued random variables

hX) = — / fx(z)log fx(x)dx
 Estimating the entropy

* Plugin estimator

« How does Histogram estimate perform?
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« Example 5.5

« Data:
93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6

5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90
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« Histogram of data

« Data:
93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6

5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90
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« Histogram of data

« Data:
93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6

5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90
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 Entropy of continuous valued random variables
hX) = — / fx(z)log fx(x)dx
x
 Estimating the entropy
* Plugin estimator
» Histogram estimator performs poorly for high dimensional data

« Extreme dependence on bin size, even in one dimensional data

= (Xy,Xs,...,X,) where X; € R¢
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- Kernel density estimation (Parzen’s window)

- Based on n samples of d dimensional data

= (Xq,Xao,...,X,) where X; € R
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« The concept:

» Consider the probability of a mass in a region

P:/AfX(X)dX

- That is, the probability of a point being inside of area A
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« The concept:
+ Consider the probability “mass” in a region
P = / fX (X)dX
A
- That is, the probability of x being inside of area A
+ The total number of data pointsis n

» The probability of k points being inside region A is Pk
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P= | fx(x)dx
A

« The total number of data points is n

 Probability of k out of n be inside region A is

n

Pr(n, k) = <k> PR(1 — p)ynk
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P = /A fx (x)dx

 For large n, the (average) number of points inside the region

k~nP

- If the region is assumed to be small then the density will be approximately
constant

P = fxV4

where V4 is the volume of A
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P = /A fx (x)dx

- If the region is assumed small then the density will be approximately constant

P~ fxVa

- The probability density function over a small region, however, with enough
points inside is

k

Jx = nVa
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 If we fix the volume and determine k from the data

« We will have KDE (Parzen’s window)

 |f we fix k and determine the volume

- We will have K-nearest neighbor (k-NN)
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« Recall the density was approximated as

K
nV 4

« Then, in KDE the volume is fixed. Example of fixed volume hypercube

i [ (m) _

0 otherwise
 |f the data falls inside the cube it counts as one.

fx ~
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- If the region was a hypercube with side h then
X — X
h

+ Since the point X; is inside the hypercube

K( ) will be 1

- Then, the total number of data points inside the kernel is

k:ZK(X;Xi)

1=1
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« Example 5.6

 An illustrative example

171
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volume fx
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volume fy
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volume Fx
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volume

K(x — x1)
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- The KDE R 1 <« X — X
=— Y K Z
fh(X) nhd — ( h )

+ Using hypercube has similar rough boundaries as histogram approach does

« A candidate kernel is Gaussian

K(z) xe ™
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« Example 5.7

- KDE example with small h

0.8 |

0.7}

06|

05}

04

0.3

0.2

01

0.0
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* Moderately small h

35}

30

25}

20}

15}

10}

05}

0.0 & ® O o0 o O ¢ CIdpaIe @@
' 60 70 80 90 100
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« Mid range value of h

50 60 70 80 90 100 110
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- Large h
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- The parameter h controls smoothness of resulting estimate

« Choice of h is critical

* There are still issues with KDE

 Large dimensions

» We can not guarantee to have enough points in each area A
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« K nearest neighbor is a powerful alternative to KDE

« With k-NN, we fix the number of points in a region

 The k-NN estimate is

k
fx =~ oV
. kL . .
fx(x) = — with V as the volume with k points

nV
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 For a point x to calculate density of the random vector at x, that is, fX (X)

 The distance

d
D; = [|x — xi[|2 = Z(x(m> — 22
\mzl

- Choose k nearest neighbors among all points

0< D3 <Dy <Dy <Dy

fX(iU)\ fx
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 For a point x to calculate density of the random vector at x, that is, fX (X)

« Choose 3 nearest neighbors among all points then calculate the volume

. k
fx(x) = — with V' as the volume with k points
n
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 Blue density is the ground truth

* Red is the k-NN estimated density
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- These are examples of two density estimators as plugins for estimating

+ Entropy iL(X) = — / fX () log fX (x)dx

« Mutual information

[(X:Y) =h(X) - h(X|Y)
* Directed information

I(XT — Y") = h(Y(") — h(Y{"||XT)

« Coherence and mutual information in frequency

MIX,Y(f7 f) = ](dXﬁdY/f) = —log|1 — CX,Y(f)]
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Summary for Set |

A probabilistic approach to dealing with recorded signhals and data
« Avoid unnecessary assumption of a model
« Data driven techniques to estimate features in data

» correlation, dependence, causality, coherence
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