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Course Outline

• 1. Preliminaries


• 2. A probabilistic approach (books by Hajek and Mackay)


• Statistical characteristics of data


• Statistical analysis of the performance


• 3. Data (book by Hajek)


• Continuous time


• Discrete time
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• 4. Frameworks for learning from data (MacKay)


• Parametric models


• Non-parametric—data driven 
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• 5. Estimating key statistical metrics from data (Bishop 2.4, 2.5)


• Estimating probability mass function


• Density estimation


• Plugin estimators 


• Kernel density estimation (KDE)


• K nearest neighbor (k-NN)
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Set II

• 6. Data representation (Bishop 8)


• Graphical modeling


• Directed graphs


• Bayesian network


• Undirected graphs


• Markov random fields


• Factor graphs
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1. Preliminaries

• Engineering is all about designing a system with constraints


• or more often, “improving” the functionality of a physical system within 
some practical constraints


• The system could be anything from a bridge to the space station to the world 
wide web


• Examples of physical systems could be our environment, a biological system, 
or a factory


• The constraints could be the form factor, the cost, power, time, among others
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• Engineers use fundamental tools like mathematics, physics, chemistry, and 
economics


• For years their starting point has been building a model


• Model of the system


• Model of the constraints


• The impact of their work has been limited by the accuracy of their model


• The model is often also used to evaluate the performance 
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• Despite  possible limitations of models we have thousands of engineering 
marbles 


• Golden gate bridge


• World wide web


• Cellular LTE


• Robots


• …
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• “Essentially all models are wrong but some are useful” G. Box (1987)


• A move from model based engineering to data based engineering


• Can we engineer based on data?


• A precursor is “inference” where we try to find the most appropriate 
explanation for data
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• Over the last decade there has been a data deluge 


• Incredible connectivity


• Cheap storage and computational machines


• Availability of sensors


• There are many positives and negatives to the explosion of data


• Let’s only focus on the positives
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• Learning from data


• A probabilist approach


• Data could be noisy 


• Model could have inherent uncertainty


• Insufficient size of data set


• A probabilistic inference may be desirable


• Example: 80% chance of rain
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2. A probabilistic approach

• Input space = feature space = signal domain


• Output space = response space = signal range


• Examples: 


• Classification


• Estimation
X = <d and Y = {0, 1}

X

Y

X = < and Y = < where Y = g(X) + Z
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• In many systems and problems, input ( data ) denoted as X and output by Y


• Assume a joint distribution of


• Cumulative distribution function (CDF) and joint CDF


• Probability density function (PDF) and joint PDF if variables are continuous 
valued

(X,Y ) as FX,Y

FX(a) =
R a
�1 fX(x)dx

FX,Y (a, b) =
R a
�1

R b
�1 fX,Y (x, y)dxdy
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FX(a) = P{X  a} and FX,Y (a, b) = P{X  a and Y  b}



• For discrete data we define probability mass function (PMF)


• Joint probability mass function 
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FX(a) =
X

xia

pX(xi) where pX(xi) = P (X = xi)

FX,Y (a, b) =
X

xia

X

yjb

pX,Y (xi, yj) where pX,Y (xi, yj) = P (X = xi, Y = yj)



• Conditional distribution and conditional probability mass function


• If X and Y are jointly discrete 
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pY |X(yj |xi) =
pX,Y (xi, yj)

pX(xi)

FY |X(b|xi) =
X

yjb

pY |X(yj |xi)



• Conditional distribution and conditional density


• If X and Y are jointly continuous then

FY |X(y|x) and FY |X(b|x) =
R b
�1 fY |X(y|x)dy
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fY |X(y|x) = fX,Y (x, y)

fX(x)



• The expectation operator


• Similarly if X is discrete

E[g(X,Y )] =
R
<2 g(x, y)dFX,Y =

R
<2 g(x, y)fX,Y dxdy

E[g(X)] =
R
< g(x)dFX =

R
< g(x)fXdx
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E[g(X)] =

Z

<
g(x)dFX =

X

i

g(xi)pX(xi)

E[g(Y )|X] =
R
< g(y)dFY |X =

R
< g(y)fY |Xdy



• X and Y are independent if


• Correlation between X and Y 

• Mutual information between X and Y 

I(X;Y ) =
R
<2 fX,Y log( fX,Y (x,y)

fX(x)fY (y) )dxdy

RX,Y = E[XY ⇤] and CX,Y = E[XY ⇤]� E[X]E[Y ]⇤
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FX,Y (a, b) = FX(a)FY (b) 8a and b
or fX,Y (x, y) = fx(x)fY (y) 8x and y



• X and Y are independent if


• Correlation between X and Y 

• Mutual information between X and Y 

RX,Y = E[XY ⇤] and CX,Y = E[XY ⇤]� E[X]E[Y ]⇤
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FX,Y (a, b) = FX(a)FY (b) 8a and b
or pX,Y (xi, yj) = pX(xi)pY (yj) 8i and j

I(X;Y ) =
P

i,j pX,Y (xi, yj) log
pX,Y (xi,yj)
pX(xi)pY (yj)



• Correlation coefficients 


• Mutual information


• All these measure relationship among variables


• Correlation, independence, and mutual information

0  I(X;Y )
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�1  ⇢X,Y = CX,Yp
V ar(X)V ar(Y )

 1



• Example 2.1: If X and Y are independent


• Then


• If X is zero mean and has a symmetric density and Y is squared X then


• Are X and Y independent?


• Are they uncorrelated? 


• Is their mutual information zero?  
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CX,Y = 0 and I(X;Y ) = 0



• Mutual information seems to be a powerful metric of dependency


• The origin of mutual information dates back to late 1940s.


• It is based on the concept of entropy from thermodynamics and statistical 
mechanics from mid 1800s.
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• We can define a triple probability space to describe uncertainty of our system


• The outcome of the experiment


• The universal set of possible outcomes


• A relevant event A as a collection of outcomes of interest


• The probability of an event P(A)


• A random variable 
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• Information content of an event


• Average information content of a discrete random variable


• It is the entropy


• Differential entropy of a continuous random variable

� log2(P (A)) where A 2 F

h(X) = �
Z

x
fX(x) log fX(x)dx

H(X) = �
X

i

pX(xi) log pX(xi)

H(X) � 0

�24



• Differential entropy can be negative.


• It is best used comparing h(X) and h(Y), hence the concept of differential


• An alternative, formulation


• Yet another formulation based on a distance measure 

�25

I(X;Y ) = H(Y )�H(Y |X) = H(X)�H(X|Y )

I(X;Y ) = h(Y )� h(Y |X) = h(X)� h(X|Y )



• The “distance” between two probability measures (PDF or PMF)


• Kullback-Leibler distance

DKL(fX ||gX) =

Z

x
fX(x) log

fX(x)

gX(x)
dx

I(X;Y ) = DKL(fX,Y ||fXfY )

DKL(f ||g) � 0

�26



• Recall inference is a critical outcome of many problems in data analysis


• In all inference problems, we have an objective, therefore, we have loss and 
risk

�27



• Loss function


• Examples are

` : Y ⇥ Y ! <

if Y = {0, 1} then `(y, ŷ) = 1 if y 6= ŷ
if Y = < then `(y, ŷ) = (y � ŷ)2 or E(Y � Ŷ )2

�28



• Risk of inference


• Finding the output corresponding an input


• The performance of a given mapping


• The optimum mapping

g : X ! Y

R(g) = E[`(Y, g(X))]

R⇤ = infg R(g) = infg E[`(Y, g(X))]

�29



• Example 2.2 


• The connection between estimation and information theory


• Assume data 


• Data is assumed independent and identically distributed with probability 
mass function 

• The objective:


• Find a distribution for the data that maximizes the likelihood of the data

X = (X1, X2, . . . , Xn)
>

�30



• Find the probability mass function that generated the data, that is,  

• Can data provide a mechanism to find the underling distribution that 
generated the data? 


• Find the model among the set of possible models that maximizes the 
likelihood of generating the data. 

�31



• The maximum likelihood estimate of the probability among a set is 


• q is a possible probability mass function that could have generated the data


• q is the probability that x = 0


• An appropriate loss function could be the negative log loss

�32

argmax
q2Q

qX(x) = argmax
q2Q

log qX(x) = argmin
q2Q

� log qX(x)
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• The loss function


• The risk


• The risk is minimized with q = p 

• The minimum risk is 

�33

R
⇤ = Ep[`(p,X)] = H(p)

`(y, ŷ) = `(q,X) = � log qX
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R(q) =E[`(y, ŷ)] = Ep[`(q,X)] = �Ep[log qX)]

=DKL(p||q) + Ep[`(p,X)]

=DKL(p||q) +R(p)
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• A specific case is binary independent identically distributed sequence of data


• Ground truth 


• Find a distribution for the data that maximizes the likelihood of the data


• Since the data samples are independent

�34

X = (X1, X2, . . . , Xn)
> with Xi 2 {0, 1}

x = (0, 1, 0, 0, 0, 1)

pX(x) = [pXi(xi)]
n
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argmax
q2Q

qX(x) = argmax
q2Q

nY

i=1

qXi(xi)
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• Since data are binary


• The maximum likelihood estimate of the probability q is derived


• The most likely probability is 

�35

d(ql(1� q)(n�l))

dq
= 0

q⇤ =
l

n



• In the specific case of


• The ML estimate is


• Obviously the ground truth is not known.   

�36

x = (0, 1, 0, 0, 0, 1)

q⇤ = 2/3



3. Data

• Temporal observations


• Temporal relationships


• Spatial observations


• Spatial relationships

X1, X2, . . . , Xn

RXi,Xj

RX(k),X(l)

�37

X(1), X(2), . . . , X(d)



• 3 illustrative examples of data
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�40



• .

�41



�42



• High right atrial 


• His* bundle


• Coronary sinus 


• Right ventricle apex

�43* William His, Junior, a Swiss cardiologist, 1893



• A very different example,


• Voltage sensitive dye

�44



�45
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Fig. 8. Analyzing VSD recording data using DI. A: The VSD imaging surface of the caudal surface of the left buccal

hemiganglion and the kernel markup of the recording surface. B: Raster plot of a 2 min VSD recording from the ganglion.

C: The adjacency matrix of the network obtained from DI analysis. Many putative connections were detected.

1d has both an excitatory and an inhibitory synaptic connection and occur frequently. There are several422

neurons within the feeding CPG with the capability of projecting both excitatory and inhibitory synaptic423

connections (eg. B4 and B71) (Gardner, 1977; Sasaki et al., 2013). Again, we would expect motifs 1c-d424

and 1f-g to occur with the same frequency if the detected connections occurred by chance. However,425



• Often recorded data are continuous time signals


• where 


• Discrete time data is often much more desirable


• It can be stored


• It is easy to analyze and process with digital filters

�47

w is an outcome of the random experiment and ⌦

is the set of all outcomes

X(1)
t (w), X(2)

t (w), . . . , X(d)
t (w) 8t and w 2 ⌦



• Continuous time signals can be represented with discrete time data


• With no loss of information


• Sampling


• Projection

Xt(w) 8t ! X1(w), X2(w), . . . , Xn(w)

�48



• Sampling and reconstruction


• Where W is the bandwidth of the power spectral density and


• The power spectral density of the process is


• The autocorrelation is


• The data signal is assumed to be wide sense stationary (wss)

T =
⇡

W

SX(f) = F{RX(⌧)}

RX(⌧) = E{Xt+⌧X
⇤
t }

�49

Xt(w) =
+1X

n=�1
XnT (w)

sin(W [t� nT ])

W (t� nT )



• Example 3.1 : Assume that the process is ideally band limited,  that is,


• In this example,


• Where 


• And 

SX(f) =

⇢ N0
2 if f 2 [�W,W ],
0 otherwise

RX(⌧) =
N0

2T

sin(W ⌧)

W ⌧

T =
⇡

W

E[XnTX⇤
mT ] = 0 if m 6= n

�50



• If the data signal is wide sense stationary


• That is, 


• The discrete samples carry all the information in the data signal


• Since we have

�51

RX(⌧) = E{Xt+⌧X
⇤
t } 8⌧ not a function of t

. . . , X�T , X0, XT , X2T , . . . , XnT

Xt(w) =
+1X

n=�1
XnT (w)

sin(W [t� nT ])

W (t� nT )



• The discrete samples carry all the information in the data signal


• These samples will be uncorrelated (independent if the signal is Gaussian) if 
the spectrum is ideally band-limited. 


• No need to carry the sampling period in the notation

�52

. . . , X�T , X0, XT , X2T , . . . , XnT

X = (X1, X2, . . . , Xn)
>



• In general, for band limited processes, the samples are correlated.


• The samples can be made uncorrelated using whitening linear filters.


• Define zero mean process


• The n x n covariance matrix


• It is square


• non-negative definite 


• Hermitian matrix

X = (X1, X2, . . . , Xn)
>

⌃X = E[XX>]

�53



• The covariance matrix


• If the covariance matrix is positive definite 


• Linear transformation


• The matrix A could be an m x n matrix and Y will then be m x1 


• Then, the m x m covariance matrix of Y is 


• If   

⌃X = E[XX>]

Y = AX

⌃Y = A⌃XA>

⌃X = CC> then Y = C�1X has ⌃Y = I

�54



• Example 3.2 

�55

⌃Y = A⌃XA>

⌃X = CC> then Y = C�1X has ⌃Y = I

Y =

2

4
1/2 0 0
�3 1 0
19/3 �5/3 1/3

3

5X



�56

• Example 3.3 



�57

• Example 3.3 


• One interpretation


•  Different elements of the original data are correlated


• if one element is 1.2 it is very likely that the other element is close to 
1.


• When data is whitened, then in the processed data, if one element is 
1.2 the other one is still widely distributed


• Still no information is lost



• Sampling “would not work” when the random signal is not wide sense 
stationary


• Even if wss, the samples could be, often are, correlated


• Karhunen-Loeve expansion of a more general random signal


• The autocorrelation


• Eigenfunctions of the autocorrelation function

RX(t, s) = E[XtX
⇤
s ]

Z +1

�1
RX(t, s)↵n(s)ds = �n↵n(t) 8t

�58



• Example 3.4 


• A concept analogous to eigenvectors of a matrix


• The eigenvectors are orthogonal since A is a symmetric matrix

�59

A =


2 1
1 2

�


2 1
1 2

�
x1 = �1x1 and


2 1
1 2

�
x2 = �2x2

Ax = �x

< x1,x2 >= 0

x1 =


1
1

�
,�1 = 3 and x2 =


1
�1

�
,�2 = 1

<latexit sha1_base64="aTkCo9+N7Ag5pp7NRT8YEu840sE=">AAAChXicdVFNa9wwEJXdjyTbr217zGXoUsihWaxNaAulNLSXHlPoJoHVssjyeCMiy0Yal12M/0l+VW79N5WdhbRJMyDx9GbejGYmrYz2lCS/o/jBw0ePt7Z3Bk+ePnv+Yvjy1Ykva6dwqkpTurNUejTa4pQ0GTyrHMoiNXiaXnzr/Ke/0Hld2p+0rnBeyKXVuVaSArUYXopC0nmaN6t2weEziBSX2jZpYJ1etcABhAi3QJvdsO9AmFAjk73mAMQnEIQraqTN2v51k3Vyb9b9+9N2Ig6L4SgZJ73BXcA3YMQ2drwYXomsVHWBlpSR3s94UtG8kY60MtgORO2xkupCLnEWoJUF+nnTT7GFt4HJIC9dOJagZ/9WNLLwfl2kIbLrzt/2deT/fLOa8o/zRtuqJrTqulBeG6ASupVAph0qMusApHI6/BXUuXRSUVjcIAyB3275LjiZjHky5j8OR0dfN+PYZrvsDdtjnH1gR+w7O2ZTpqI42ot4NIm34v34MH5/HRpHG81r9o/FX/4Ajeq+kw==</latexit><latexit sha1_base64="aTkCo9+N7Ag5pp7NRT8YEu840sE="></latexit><latexit sha1_base64="aTkCo9+N7Ag5pp7NRT8YEu840sE="></latexit><latexit sha1_base64="aTkCo9+N7Ag5pp7NRT8YEu840sE="></latexit>



• Analogous to eigenvectors, eigenfunctions are also orthogonal


• It is intuitive to expect that the projection of the data signal on these 
eigenfunctions would be orthogonal and uncorrelated if the random process 
was zero mean.
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�n,m =

⇢
1 if n = m,
0 otherwise

Z +1

�1
↵n(t)↵

⇤
m(t)dt = �n�n,m



• Then, we can write


• Where 

Xt(w) =
+1X

n=0

↵n(t)Zn(w)

E[ZnZ
⇤
m] = �n,m

Zn(w) = ��1
n

Z +1

�1
Xt(w)↵

⇤
n(t)dt

↵n(t) = E[XtZ
⇤
n] 8t
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Z +1

�1
↵n(t)↵

⇤
m(t)dt = �n�n,m



• Where


• The information is represented in 


• The structure is represented in


• All because we have 

�n,m =

⇢
1 if n = m,
0 otherwise

↵0(t),↵1(t), . . . ,↵n(t), . . .

Z0(w), Z1(w), . . . , Zn(w), . . .

�62

Xt(w) =
+1X

n=0

↵n(t)Zn(w)



• Similar to sampling


• where samples carry all the information

�63

. . . , X�T , X0, XT , X2T , . . . , XnT , . . .Xt(w) sampling 
rate 1/T

Xt(w) =
+1X

n=�1
XnT (w)

sin(W [t� nT ])

W (t� nT )



• Projections on eigenfunctions carry all the information

Z0, Z1, Z2, . . . , Zn, . . .
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Xt(w)

↵1(t)

↵n(t)

Z
dt

Z
dt

Z
dt

...

...

Z1(w)

Zn(w)

x

x

x

↵0(t)

Z0(w)



• Assume that the data is discrete time stochastic process


• Parametric models with a few parameters


• Gaussian, linear, Poisson, …


• Data driven—“model free”


• Discrete valued time series


• Continuous valued time series
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• Assume the data is


• Then the mutual information between two time series


• The dependency of one set of data with another 

Xn
1 = (X1, X2, . . . , Xn) where Xi 2 <

Xn
1 and Y n

1
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• Example 3.5


• Two small sets of data and their dependency


• Where


• Recall that 

�67

I(X1, X2;Y1, Y2) = I(X1, X2;Y1) + I(X1, X2;Y2|Y1)

I(X1, X2;Y1) = I(X1;Y1) + I(X2;Y1|X1)

I(X1;Y1) = h(X1)� h(X1|Y1) = h(Y1)� h(Y1|X1)



• Example 3.6


• Lets start with dependencies between two single random variables X and 
Y.
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• Example 3.6


• Assume X and Z are each a Gaussian random variable and independent 


• The model Y = X + Z , that is, Y is a noisy but direct observation of X

�69

I(X;Y ) = h(Y )� h(Y |X)

h(Y )

h(X)



• Example 3.6


• Assume X and Z are each a Gaussian random variable and independent 


• The model Y = X + Z , that is, Y is a noisy but direct observation of X

�70

I(X;Y ) = h(Y )� h(Y |X)
h(Y )

h(X)



• Example 3.6


• Assume X and Z are each a Gaussian random variable and independent 


• The model Y = X + Z , that is, Y is a noisy but direct observation of X

�71

I(X;Y ) = h(Y )� h(Y |X)

h(X)



• Note that both X and Z are Gaussian and that

�72

I(X;Y ) = h(Y )� h(Y |X)

h(Y )

h(X)

h(Y |X) = h(Z)

h(X) = �
Z +1

�1

1p
2⇡�2

X

e�x2/2�2
X log

� 1p
2⇡�2

X

e�x2/2�2
X
�
dx
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I(X;Y ) = h(Y )� h(Y |X)

h(Y )

h(X)

h(X) = �EX [log
1p
2⇡�2

X

+ log e�X2/2�2
X ]

• Note that both X and Z are Gaussian and that h(Y |X) = h(Z)



�74

I(X;Y ) = h(Y )� h(Y |X)

h(Y )

h(X)

h(X) =
1

2
log 2⇡�2

X +
E[X2]

2�2
log e =

1

2
[log 2⇡�2

X + log e]

• Note that both X and Z are Gaussian and that h(Y |X) = h(Z)



• Note that both X and Z are Gaussian and that

�75

I(X;Y ) = h(Y )� h(Y |X)

h(Y )

h(X)

h(Y ) =
1

2
log 2⇡e[�2

X + �2
Z ] h(Y |X) =

1

2
log 2⇡e�2

Z

I(X;Y ) =
1

2
log

�
1 +

�2
X

�2
Z

�

h(Y |X) = h(Z)



• For comparison, let’s examine the correlation between X and Y
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• For comparison, let’s examine the correlation between X and Y.


• Recall


• In this example, 


• Compared to, 

�77

I(X;Y ) =
1

2
log

�
1 +

�2
X

�2
Z

�



• Back to time series


• Then the mutual information between two time series


• Also  

Xn
1 = (X1, X2, . . . , Xn) where Xi 2 <

Xn
1 and Y n

1

I(Xn
1 ;Y

n
1 ) =

nX

i=1

I(Xn
1 ;Yi|Y i�1

1 )

= I(Xn
1 ;Y1) + I(Xn

1 ;Y2|Y1) + I(Xn
1 ;Y3|Y 2

1 ) + . . .

I(Xn
1 ;Y

n
1 ) = h(Y n

1 )� h(Y n
1 |Xn

1 )
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• Mutual information of two time series measure general “dependence” of the 
two time series as a whole


• No temporal information, no influence, nor causality


• It is often critical to measure causality. 


• One data forecasting or influencing another


• Stock market


• Transportation


• Economics
�79



• In this example it is easy to guess that X causes Y
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�81

• In this example it is not easy



Price of Arabica  
Granger causes  
price of Robusta
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• Grainger causality


• If signal X causes signal Y then passed values of X should contain 
information that helps predict Y above and beyond the information 
contained in past values of Y alone


• Granger is defined based on a linear model assumption where Z is noise

�83

Yk+1 = a0Yk + a1Yk�1 + . . .+ b0Xk + b1Xk�1 + . . .+ Zk



• Example 3.7


• If the relationship were based on a linear autoregressive model 


• Does X cause Y or does Y cause X?


• Past and current values of X can help better predict the future values of Y

�84

Yk+1 = 0.1Yk + 0.2Xk + Zk



• Testing hypotheses


• If the coefficients, b’s, are zero then X does not Granger cause Y  

• If the coefficients, d’s, are zero then Y does not Granger cause X 

• Granger causality quantifies the impact of coefficients b’s and d’s.

�85

Yk+1 = a0Yk + a1Yk�1 + . . .+ b0Xk + b1Xk�1 + . . .+ Zk



• Test the hypothesis that setting b’s to zero increases the residual variance of 
estimating 

�86

CG(X ! Y ) = log
�2
Ŷ
(0)

�2
Ŷ
(b)

CG(Y ! X) = log
�2
X̂
(0)

�2
X̂
(d)

Yk+1 = a0Yk + a1Yk�1 + . . .+ b0Xk + b1Xk�1 + . . .+ Zk



• Shortcomings of Granger casualty


• The data is assumed to be linearly dependent in time. 


• Autoregressive


• The two data sets are assumed to be linearly dependent


• The data sets are assumed to be Gaussian


• Stationarity is assumed


• The impact of using Granger on non-stationary data is not known
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• Recall that mutual information does not capture temporal information


• A careful adjustment

I(Xn
1 ;Y

n
1 ) =

nX

i=1

I(Xn
1 ;Yi|Y i�1

1 )

= I(Xn
1 ;Y1) + I(Xn

1 ;Y2|Y1) + I(Xn
1 ;Y3|Y 2

1 ) + . . .

I(Xn
1 ! Y n

1 ) =
nX

i=1

I(Xi
1;Yi|Y i�1

1 )

= I(X1;Y1) + I(X2
1 ;Y2|Y1) + I(X3

1 ;Y3|Y 2
1 ) + . . .
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• Directed information is a measure of causality in relation between X and Y 

• It is a universal quantity measuring


• influence 


• predictability


• information flow
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• Example 3.8


• with i.i.d.
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Yn = Xn + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)



• with i.i.d.

independent
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Yn = Xn + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)
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Yn = Xn + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(Xn
1 ! Y n

1 ) =
nX

i=1

I(Xi
1;Yi|Y i�1

1 )

= I(X1;Y1) + I(X2
1 ;Y2|Y1) + I(X3

1 ;Y3|Y 2
1 ) + . . .

= I(X1;Y1) + I(X1;Y2|Y1) + I(X2;Y2|Y1, X1) + . . .

=
1

2
log(1 +

�2
X

�2
Z

) + 0 +
1

2
log(1 +

�2
X

�2
Z

) + . . .

=
n

2
log(1 +

�2
X

�2
Z

)
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Yn = Xn + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(Xn
1 ! Y n

1 ) =
nX

i=1

I(Xi
1;Yi|Y i�1

1 )

= I(X1;Y1) + I(X2
1 ;Y2|Y1) + I(X3

1 ;Y3|Y 2
1 ) + . . .

= I(X1;Y1) + I(X1;Y2|Y1) + I(X2;Y2|Y1, X1) + . . .

=
1

2
log(1 +

�2
X

�2
Z

) + 0 +
1

2
log(1 +

�2
X

�2
Z

) + . . .

=
n

2
log(1 +

�2
X

�2
Z

)



• The normalized, per time, mutual information and directed information


•

�94

Yn = Xn + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(X ! Y ) = I(Y ! X) = I(X;Y ) =
1

2
log(1 +

�2
X

�2
Z

)



• Example 3.9


• With i.i.d.
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Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

Yn = Xn�1 + Zn



• With i.i.d.

independent
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Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

Yn = Xn�1 + Zn



•

independent
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Yn = Xn�1 + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(Xn
1 ! Y n

1 ) =
nX

i=1

I(Xi
1;Yi|Y i�1

1 )

= I(X1;Y1) + I(X2
1 ;Y2|Y1) + I(X3

1 ;Y3|Y 2
1 ) + . . .

= I(X1;Y1) + I(X1;Y2|Y1) + I(X2;Y2|Y1, X1) + . . .

= 0 +
1

2
log(1 +

�2
X

�2
Z

) + 0 +
1

2
log(1 +

�2
X

�2
Z

) + . . .

=
n

2
log(1 +

�2
X

�2
Z

)



•

independent
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Yn = Xn�1 + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(Xn
1 ! Y n

1 ) =
nX

i=1

I(Xi
1;Yi|Y i�1

1 )

= I(X1;Y1) + I(X2
1 ;Y2|Y1) + I(X3

1 ;Y3|Y 2
1 ) + . . .

= I(X1;Y1) + I(X1;Y2|Y1) + I(X2;Y2|Y1, X1) + . . .

= 0 +
1

2
log(1 +

�2
X

�2
Z

) + 0 +
1

2
log(1 +

�2
X

�2
Z

) + . . .

=
n

2
log(1 +

�2
X

�2
Z

)



•
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Yn = Xn�1 + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(Y n
1 ! Xn

1 ) =
nX

i=1

I(Y i
1 ;Xi|Xi�1

1 )

= I(Y1;X1) + I(Y 2
1 ;X2|X1) + I(Y 3

1 ;X3|X2
1 ) + . . .

= I(Y1;X1) + I(Y1;X2|X1) + I(Y2;X2|X1, Y1) + . . .

= 0 + 0 + . . .



•
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Yn = Xn�1 + Zn

Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(Y n
1 ! Xn

1 ) =
nX

i=1

I(Y i
1 ;Xi|Xi�1

1 )

= I(Y1;X1) + I(Y 2
1 ;X2|X1) + I(Y 3

1 ;X3|X2
1 ) + . . .

= I(Y1;X1) + I(Y1;X2|X1) + I(Y2;X2|X1, Y1) + . . .

= 0 + 0 + . . .



• Recall 


• then
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Xn ⇠ Gaussian(0,�2
X)

Zn ⇠ Gaussian(0,�2
Z)

I(X ! Y ) =
1

2
log(1 +

�2
X

�2
Z

)

I(Y ! X) = 0

Yn = Xn�1 + Zn



• In these two examples Granger causality and directed information result in 
similar measures


• Since time series are 


• Linearly related 


• Gaussian


• It is not clear if Granger causality is the right metric in the coffee price 
example since the linearity model may or may not be valid.
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• A nonlinear model


• where Z is Gaussian noise


• Can X help predict Y? 


• Can Y help predict X?


• How about in these cases?

�103

Yk = �1X
2
k + �2X

2
k�1 + Zk



• A nonlinear model


• where Z is Gaussian noise

�104

For Review Only
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uncertainty in the current sample of X does not depend on
�2, when causally conditioned on the past of X and Y.

The DI from X to Y and vice versa is estimated from
N = 105 samples of X and Y generated with �2

x = 1, �2
z = 1

using the proposed model-based and data-driven DI estimators.
The model-based DI estimator assumes that the time-series
are modeled by a MVAR model with Gaussian white noise,
whereas the data-driven CCL estimator does not impose any
model assumptions on the data. Assuming X, Y are from a
MVAR process and when xn is included in the past samples
of X, Granger causality estimate from X to Y is equal to
twice the MVAR model-based DI estimate from X to Y and
vice versa [30]. We therefore do not show the GC estimates for
linear MVAR models with Gaussian white noise. GC estimates
are plotted only for nonlinear simulated models in this paper.

Fig. 3 plots directed information values obtained from the
analytical expression in (15), Î (X ! Y) and Î (Y ! X)
from the proposed model-based and data-driven DI estimators
for different values of �1 2 (0, 1). The corresponding curves
are respectively referred to as theoretical, model-based and
data-driven. �2 = �1 in Fig. 3a and �2 = 1 � �1 in
Fig. 3b. When �1 = �2, a larger �1 implies a stronger causal
connection between X and Y and this should result in a
larger DI. This expected trend is observed in Fig. 3a. This
implies that DI tracks the strength of the causal connection.
Also in the corner case of �1 = �2 = 0, DI is zero in both
directions as expected. In Fig. 3b, DI estimates in the corner
cases of �1 = 0, �2 = 1 and �1 = 1, �2 = 0 match with
the analytical expression as expected. Also as �1 increases
from 0 to 1, the causal information Y has about X increases,
and DI tracks this. This is demonstrated by observing that
Î (Y ! X) increases with �1 in Fig. 3b. Finally, it is clear
from Fig. 3 that the model-based estimate matches the correct
value of DI estimate from (15) and the data-driven estimator
follows the true value of DI. This validates the accuracy of the
proposed DI estimators. For this MVAR model with Gaussian
white noise, the model-based DI estimator clearly performs
better than the data-driven DI estimator and also has a lower
run-time. We therefore use the MVAR model-based estimator
to estimate DI between data modeled by MVAR processes
with Gaussian white noise, instead of using the data-driven
estimator.

The adaptation of stationary bootstrap algorithm described
earlier is used to assess the significance of the inferred causal
connections for different values of (�1,�2). We observed that
the null hypothesis of no causality from Y to X cannot be
rejected for �1 2 {0, 0.1} (P-value > � = 0.05) and can be
rejected at all other points (P-value < �) in Fig. 3. This is not
surprising since Î (Y ! X) is small for �1 2 {0, 0.1} and
hence did not result in a significant causal connection from Y
to X. Similarly, we observed that statistically significant causal
connection from X to Y does not exist for �1 = 0,�2 = 0
(P-value > �) and exits at all other points (P-value < �) in
Fig. 3. This once again confirms our intuition that only large
positive values of DI imply a statistically significant causal
connection.

(a) �2 =�1
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ne
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0.25

0.5
Î (X ! Y)

Î (Y ! X)

ĜC (X ! Y)

ĜC (Y ! X)

(b) �2 =1� �1

Fig. 4. Data-driven DI and GC estimates for the two node network (depicted
in Fig. 2a) generated from the nonlinear model (16) for different values of
causal strength quantified by (�1,�2). The estimates are plotted against �1
with �2 = �1 in Fig. 4a and with �2 = 1� �1 in Fig. 4b.

B. Two Node Bidirectional Nonlinear Causal Network
The time-series Y is now generated according to

yn = �1x
2
n + �2x

2
n�1 + zn, for n = 1, 2, · · · , N, (16)

where xn and zn are sampled from an i.i.d Gaussian distribu-
tion with zero mean and variance �2

x, �2
z respectively. Also, the

samples of X and Z are independent. It is very non-trivial to
estimate Î (X ! Y) and Î (Y ! X) using model-based DI
estimator. This is because estimating p

�
xn|Xn�1

1 ,Yn
1

�
and

p
�
yn|Yn�1

1

�
requires essentially inverting the non-linear, non-

Gaussian generative model in (16) and this is very hard even
for this simple nonlinear model. These two probability densi-
ties are required to estimate ĥ (XkY) and ĥ (Y) respectively.
Therefore we only use the proposed data-driven DI estimator
to estimate the DI from X to Y and vice versa. However,
we can always assume that the data from the model in (16)
comes from a MVAR model with Gaussian noise, which is
incorrect and estimate DI using the proposed MVAR model-
based DI estimator. The resulting DI estimate will be half of
the Granger causality estimate between these two time-series,
ĜC (X ! Y) and ĜC (Y ! X). Note that GC also assumes
the data is generated from a MVAR process even though it
is incorrect. We will now compare the performance of data-
driven DI and GC estimates on this model.

Directed information and Granger causality between X and
Y in both directions is estimated from N = 105 samples
generated with �2

x = 1, �2
z = 1 for different values of

(�1,�2) and plotted in Fig. 4. The DI and GC estimates
are plotted for �2 = �1 and �2 = 1 � �1 in Fig. 4a and
Fig. 4b respectively. In Fig. 4a, Î (X ! Y) increases with �1

as expected. DI estimates also behave as expected in the corner
cases of (�1,�2) = (0, 1) and (1, 0) in Fig. 4b. Î (Y ! X)
increases with �1 as expected. This once again demonstrates
that DI tracks the strength of causal connections. On the other
hand, Granger causality estimates in both directions are almost
zero (of the order of 10�5), indicating that Granger causality
cannot detect the causal connections in nonlinear models.

The statistical significance of the inferred causal connec-
tions by DI and GC estimates for different values of (�1,�2)
in Fig. 4 is assessed using the stationary bootstrap algorithm
described in section III. Using DI, the null hypothesis of no
causality from Y to X cannot be rejected for (�1,�2) 2
{(0, 0) , (0, 1) (0.1, 0.1) , (0.1, 0.9)} and from X to Y cannot
be rejected for (�1,�2) = (0, 0) (P-value > � = 0.05) in
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• Directed information is a measure of causality in relation between X and Y 

• It is a universal quantity measuring


• Influence 


• Predictability


• Information flow


• Another important metric of relation between time series
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• Coherence


• Another concept measuring relationship between two data sets


• Consider two zero mean random vectors X and Y 

• The cross correlation is defined as


• If the series are jointly wide sense stationary  
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• The cross power spectral density is defined as


• Recall autocorrelation of a time series is


• If the times series is wide sense stationary then 


• The power spectral density is 
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• The coherence at a given frequency between two time series is defined as


• The coherence estimates the extend that Y can be predicted by X using 
optimum linear estimator


• It can be shown that


• If Y is a noiseless linear function of time series X, i.e., Y = h * X, what is the 
coherence between X and Y?
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• If Y is a linear estimator of X, then Y = h * X with no noise then 

• And the coherence is 1. 


• Any nonlinearity or noise in the system will reduce the coherence. 


• Reduction in information or estimation accuracy due to nonlinearity or noise 
at a given frequency

�109



• Example 3.10


• A linear system where Y = h * X + Z where Z is noise


• The filter is a 33 tap bandpass filter between [0.15, 0.35] normalized 
frequencies


• How effectively can X at frequency 2.5 be estimated from Y?

�110
f

0.50.350.15

|H(f)|2



• Example 3.11


• Two nonlinearly related signals, assume f = 4 Hz 

• Are X and Y coherent at frequency 4 Hz? 

�111

Xi = A cos(2⇡fi+ ✓) 8i = 1, 2, . . . , n

Yi = X2
i + Zi



• Mutual information quantifies relationship between data sets


• Ignores relative timing and causality


• Ignores frequency content of the data

�112

I(Xn
1 ;Y

n
1 ) =

nX

i=1

I(Xn
1 ;Yi|Y i�1

1 )

= I(Xn
1 ;Y1) + I(Xn

1 ;Y2|Y1) + I(Xn
1 ;Y3|Y 2

1 ) + . . .



• In many scenarios the frequency content of the data is a critical element in 
the analysis or inference


• Data from music


• Auditory neurological data


• Neurological data in different frequency bands have different significances


• Alpha, theta, beta, gamma, and high gamma bands
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• Mutual information in frequency


• That is, mutual information between Fourier transforms of the two time series


• Here i = 1, 2, … , n

�114

MIX,Y (fi, fj) = I(dX̃fi ; dỸfj )

Xi =

Z 1

0
ej2⇡ifdX̃f

Yi =

Z 1

0
ej2⇡ifdỸf



• Note that mutual information can be computed for any data set with time as 
the index or frequency or space. 


• It has been shown that when X and Y have a linear relationship then 
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Xn
1 = (X1, X2, . . . , Xn) is the recoded data and

X̃f for f 2 [0, 1] is spectral representation of data

Xi =

Z 1

0
ej2⇡ifdX̃f

MIX,Y (f, f) = I(dX̃f ; dỸf ) = � log[1� CX,Y (f)]



• Note that coherence was defined for linear systems as 


• Since it is related to mutual information in frequency it can be generalized to 
any data sets
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CX,Y (f) =
|SX,Y (f)|2
SX(f)SY (f)

MIX,Y (f, f) = I(dX̃f ; dỸf ) = � log[1� CX,Y (f)]

0 10 20 30

RAH1

RAMY2

RPBT1

Time (s)

Seizure
Start Time

DFT X̃f , Ỹf ! f̂X̃,Ỹ ! Ĥ(X̃, Ỹ ) ! Î(dX̃; dỸ )



• Note that for range of frequencies, similar to time periods, the mutual 
information in frequency is defined as

�117

MIX,Y (f, f
0) = I(dX̃fn

f1
; dỸ

f 0
n

f 0
1
)



• Example 3.12


• A linear system where Y = h * X + Z where Z is noise


• The filter is a 33 tap bandpass filter between [0.15, 0.35] normalized 
frequencies


• The mutual information between X and Y

�118
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Fig. 2. Comparing the performance of the kernel density based and nearest neighbor based estimators, KDMIF and NNMIF respectively, on simulated generated
from (15) using a 33-tap bandpass filter with passband in [0.15, 0.35] normalized frequency. In Fig. 2a, the MI-in-frequency estimates obtained from KDMIF
and NNMIF estimators along with the true value of MI-in-frequency are plotted against the normalized frequency � for �w = 1. Fig. 2b plots the bias (mean
of the ratio of the estimate and the true value in the filter passband) against the number of data samples used for estimation for �w = 1. Fig. 2c plots the plots
the MI estimate between X and Y from kernel density and nearest neighbor algorithms along with the true value of MI for different values of �w 2 [0.5, 2].
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Fig. 3. Comparing the performance of MI-in-frequency against modulation index in detecting cross-frequency coupling in data generated from (16). In Fig. 3a
and Fig. 3b, MI-in-frequency estimates obtained from nearest neighbor algorithm and modulation index are plotted respectively, when fl = 5 Hz and fh = 60
Hz in (16). Fig. 3c and Fig. 3d respectively plot the MI-in-frequency estimates and modulation index estimates, when fl = 15 Hz and fh = 60 Hz in (16).

normalized frequency range for different values of noise
standard deviation, �w 2 [0.5, 2]. We used the kernel density
and the nearest neighbor based algorithms to estimate the MI-
in-frequency and the mutual information between X and Y .
The true value of MI-in-frequency is obtained from (7) and
of mutual information is numerically calculated using power
spectral density (chapter 10 in [19]). It is clear from Fig. 2b
that the nearest neighbor based algorithm converges to the true
value faster than the kernel density based algorithm. The nearest
neighbor based algorithm also provides more accurate estimates
of both MI-in-frequency and mutual information between X

and Y , as evident from Fig. 2a, Fig 2c respectively. In addition,
nearest neighbor based MI-in-frequency algorithm runs faster
than kernel density based algorithm. We, therefore, conclude
that the nearest neighbor based MI-in-frequency algorithm
outperforms kernel density based algorithms and only depict
the results obtained from nearest neighbor based algorithm in
the remainder of the paper.

B. Comparison with Modulation Index

We now compare the effectiveness of MI-in-frequency
against modulation index in detecting cross-frequency coupling,
using the simulated model commonly used to validate CFC
metrics [6], [16], [31]. Modulation index quantifies the relation-
ship between the phase and amplitude envelopes extracted by
the Hilbert transform [3]. Consider two random cosine waves,
sl[n] and sh[n], at frequencies fl and fh respectively. Let fs

denote the sampling frequency. The samples of time-series X

and Y are generated from the following model:

sl[n] = A cos
⇣
2⇡ fl

fs
n+ ✓

⌘
, sh[n] = A cos

⇣
2⇡ fh

fs
n+ ✓

⌘

x[n] = sl[n] + w1[n], y[n] = (1 + sl[n]) sh[n] + w2[n], (16)

where A is a Rayleigh random variable with parameter 1 and
✓ is a uniformly distributed random variable between 0 and
2⇡ that is independent of A. w1[n], w2[n] are samples of i.i.d
white Gaussian noise process with standard deviation 1. We
generated samples from this model with fl = 5 Hz, fh = 60
Hz and fs = 200 Hz. MI-in-frequency between X and Y is
estimated using the nearest neighbor based algorithm from
N = 40⇥ 104 samples with Ns = 104 and plotted in Fig. 3a.
Modulation index between X and Y estimated by using the
Matlab toolbox [16], with the amplitude envelope estimated
by the Hilbert transform and is plotted in Fig. 3b. It is clear
that both MI-in-frequency and modulation index successfully
detect the cross-frequency coupling between 5 Hz component
of X and {55, 60, 65} Hz components of Y for these parameter
values. We then generated X and Y from (16) with fl = 15
Hz and all other parameter values unchanged. Fig. 3c plots the
MI-in-frequency estimates obtained via NNMIF algorithm and
as expected, we detect the CFC between 15 Hz component of
X and {45, 60, 75} Hz components of Y . However, modulation
index, depicted in Fig. 3d, was not able to correctly detect the
CFC between X and Y for these parameter values. In addition,
the strength of the modulation index decreased from around
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• Example 3.13


• Two nonlinearly related signals, assume f = 4 Hz 

�119

Xi = A cos(2⇡fi+ ✓) 8i = 1, 2, . . . , n

Yi = X2
i + Zi
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Fig. 4. (a) MI-in-frequency estimates from the nearest neighbor based algorithm between the frequency components within the random processes Y , obtained
from the single cosine data-generation model, (18) with �w = 1. Note that the MI-in-frequency estimates along the principal diagonal are not plotted, since
they are equal to 1. (b) MI-in-frequency estimates between random processes X and Y related by the single cosine data-generation model with �w = 1.
It is clear that MI-in-frequency estimator correctly identifies the pairwise frequency dependencies. (c) MI-in-frequency between X at �0 and Y at 2�0,
cMIXY (�0, 2�0), obtained from (10) along with the MI estimate between X and Y , Î (X;Y ), obtained from Algorithm 1 for various values of the noise
standard deviation, �w .

0.5 when fl = 5 Hz in Fig. 3b to 0.05 when fl = 15 Hz in
Fig. 3d. This is because metrics like modulation index can only
detect the CFC correctly with good frequency resolution only
when one of the frequencies involved is very small compared
to the other frequency. Otherwise, the bandwidth of the filter
used to extract the phase and the amplitude envelope should
be larger, which will reduce the frequency resolution in the
estimated CFC (note the smearing in Fig. 3d, when compared
to Fig. 3b) [6], [31]. In addition, we tested modulation index on
data generated from (15) and (17) and found that modulation
index is unable to detect the cross-frequency coupling for these
relationships. This is not surprising since the modulation index
like metrics are tuned to detect CFC when the underlying
coupling is of the form in (16), whereas the MI-in-frequency
defined in this paper overcomes this shortcoming, as evident
from its performance on various simulated models.

C. Nonlinear Models

We now consider square nonlinearity, where the random
processes X and Y are related by

y[n] = x[n]2 + w[n], (17)

where w[n] is white Gaussian noise with standard deviation
�w. Modulation index was not able to detect and quantify
the cross-frequency coupling for this model. We estimated
the MI-in-frequency between frequency components within Y ,
cMIY Y (�i,�j), between the frequency components of X and
Y , cMIXY (�i,�j), and the mutual information between X and
Y , Î (X;Y ), from N = 32 ⇥ 104 samples of X and Y with
Ns = 104, for different values of noise standard deviation,
�w 2 [0, 10]. Computing the true value of MI-in-frequency and
mutual information is nontrivial because of the nonlinearity. The
performance of the algorithms is assessed by checking if they
detect the cross-frequency coupling at expected frequency pairs
and by checking if the mutual information estimates decrease
with increasing noise power as expected. We considered two
different models for the stochastic process X , such that its
samples are dependent across time.

1) Random Cosine with Squared Nonlinearity: The samples
of X are generated from a random cosine wave,

x[n] = A cos (2⇡�0n+ ✓) , (18)

where A is a Rayleigh random variable with parameter 1,
✓ is a uniform random variable between 0 and 2⇡ that is
independent of A and �0 = 4

32 . It is easy to see that frequency
components of X are statistically independent and this is
confirmed by the NNMIF estimator. However, because of
the square nonlinearity in (17), the DC component of Y and
the 2�0 component of Y will be statistically dependent and
this is confirmed by Fig. 4a, which plots the MI-in-frequency
between components of Y generated with �w = 1 using
the NNMIF algorithm. The common information between
these two processes will be present between �0 component of
X and the {0, 2�0} components of Y . This cross-frequency
dependence is confirmed by Fig. 4b, which plots the estimates
of MI-in-frequency between X and Y obtained by the NNMIF
algorithm from (10): we observe that significant dependencies
occur only at (�0, 0) and (�0, 2�0) frequency pairs. As a
result, P = 1, Q = 2. The MI estimate from Algorithm 1,
Î (X;Y ) = 1

2 Î
⇣
d eX(�0);

�
deY (0), deY (2�0)

 ⌘
is plotted in

Fig. 4c. The MI estimate decreases with increasing �w as
expected. In addition, we note for this model that the DC
component of Y does not contain any extra information about
X , given the 2�0 component of Y . Therefore, we expect
1
2 Î
⇣
d eX(�0);

�
deY (0), deY (2�0)

 ⌘
= 1

2
cMIXY (�0; 2�0), a re-

sult verified in Fig. 4c, since the two curves are very close.
2) Two Random Cosines with Squared Nonlinearity: The

samples of random process X are generated according to

x[n] = A1 cos (2⇡�1n+ ✓1) +A2 cos (2⇡�2n+ ✓2) , (19)

where A1, A2 are independent Rayleigh random variables
with parameter 1, ✓1, ✓2 are independent uniformly distributed
random variables between 0 and 2⇡ that are independent of
A1, A2, and �1 = 4

32 ,�2 = 6
32 . As before, the frequency

components of X are statistically independent. However, after
some basic algebra, it is easy to see that the all possible pairs of
frequency components of Y in {0,�2 � �1, 2�1,�2 + �1, 2�2}
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• Example 3.14


• An experiment with no known ground truth


• A visual task, one trial, one monkey, non-matched (rotated image) 

�120

A recent formulation [5] inspired by previous work [6] showed how mutual 15

information (MI) can be applied to the frequency domain to address this concern and 16

more fully evaluate CFC. MI in frequency is effectively a generalization of coherence 17

that can evaluate nonlinear relationships between two time series. It does so without 18

any model constraint by quantifying statistical dependency across frequency 19

components of each time series rather than just correlation. 20

Therefore, we measured differences in coupling between clusters of LFPs during 21

learning by using MI in the frequency domain. We focused on V4 [7] LFPs from a data 22

set analyzed in a previously published work [2], where two rhesus macaques learned a 23

simple visual task and provided a binary response identifying matching stimuli. LFP 24

clustering was done to account for spatial overlap in electrode recording volumes [8]. 25

Specifically, hierarchical agglomerative clustering [9, 10] was performed via a novel 26

distance metric which used MI in frequency to yield appropriate LFP clusters. LFPs 27

within clusters were then averaged to produce prototypes [9], i.e. representative signals 28

of each cluster. Finally, we estimated the MI in frequency between prototypes to 29

investigate how coupling was associated with performance, as well as how coupling 30

differed for matching task stimuli versus non-matching. Directed information 31

(DI) [11–14], an information theoretic measure of causality, also provided insight into 32

how information flow between LFP clusters was noticeably different for match stimuli 33

compared to non-match. 34

Visual Task Learned by Rhesus Macaques 35

The analyses of this work focus on LFPs recorded from the activity of neurons in 36

mid-level visual cortex (area V4) while two monkeys learned a simple image rotation 37

task [2] as portrayed in Fig. 1. Rhesus macaques were presented with two stimuli, each 38

displayed for 300 ms with a 1 s blank period in between. The first stimulus was a gray 39

scale circular image of a natural scene, while the second was a potentially rotated (up to 40

20°) version of the first. Monkeys then decided if image orientations were a match or 41

non-match, and received a juice reward for responding correctly within 1.5 s after the 42

offset of the second image. Therefore, each trial was approximately 3.6 s in total. For 43

each day, the image shown in each trial was the same, however different images could be 44

shown across days. Accordingly, learning days were the days where the monkey was 45

presented with novel imagery. 46

Visual Matching Task Time Structure

FIXATION

Rotated?

0 s 0.3 s ~3.6 seconds per trial

TARGET 
IMAGE … TEST 

IMAGE DECISION TIME

1.3 s 1.6 s

Time

Fig 1. Time structure of each trial of the visual delayed matching-to-sample task
learned by two rhesus macaques. Monkeys fixated for 0.5 s, then two images were
displayed in the periphery of their visual field for 0.3 s each, with a 1 s blank period in
between. Macaques were then given 1.5 s to respond whether or not the identical
images had matching orientations.
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Fig 2. A: Theta MI between example LFP pairs for match trials and non-match trials
specific to a given learning day and monkey. MI was computed for 300 ms windows with
time on the x axis denoting the start of a given window. Notably, there is a distinct
epoch in both plots after 1.5 s where theta MI is significantly higher in match trials
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• Local field potential recordings from visual cortex about 500 trials


• Increase in Coherency between recorded time series


•  Theta band (3-8 Hz)


• Matched trials


• As the 2nd scene is processed

�121



4. Frameworks for Learning from Data

• Parametric models


• Accuracy of the model


• Complexity of the model


• Linear


• Gaussian


• Poisson
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• Non-parametric, data driven, model free, universal, …


• Issues


• The size of the data


• Relevance of the data


• Overfitting


• Merits


• Not limited by the model
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• Generate sufficient amount of data 


• to explore relevant features of the physical system


• to use the features to manipulate the system
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5. Estimating Key Statistical Metrics from Data

• A critical step for 


• Model based


• Data driven


• Estimating correlation, dependencies, coherence, and other measures 
among recordings, i.e., time series
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• Entropy of discrete valued random variables


• Estimating the entropy


• Plugin estimator

H(X) = �
X

i

pX(xi) log pX(xi)

Ĥn(X) = �
AX

a=1

p̂a log p̂a where p̂a =
# occurrences of symbol a

n

�126

xi 2 {1, 2, . . . , A}



• The random variables are assumed independent and identically distributed 
(i.i.d)


• It can be shown that  

E{[Ĥn(X)�H(X)]2} = O(
1

n
)
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• Example 5.1 


• The binary random variables.


•  The random variables are assumed independent and identically distributed 
(i.i.d)


•

�128

Ĥn(X) = �p̂0 log p̂0 � p̂1 log p̂1



• The binary random variables.


• Example with

�129

Ĥn(X) = �p̂0 log�p̂1 log p̂1

p̂0 =
# of occurrences of symbol 0

n

p̂1 =
# of occurrences of symbol 1

n

x = (0, 1, 0, 0, 0, 1)

Ĥn(X) =
2

3
log

3

2
+

1

3
log3



• Example 5.2
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• Example 5.2
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• Example 5.2
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Fig. 8. Analyzing VSD recording data using DI. A: The VSD imaging surface of the caudal surface of the left buccal

hemiganglion and the kernel markup of the recording surface. B: Raster plot of a 2 min VSD recording from the ganglion.

C: The adjacency matrix of the network obtained from DI analysis. Many putative connections were detected.

1d has both an excitatory and an inhibitory synaptic connection and occur frequently. There are several422

neurons within the feeding CPG with the capability of projecting both excitatory and inhibitory synaptic423

connections (eg. B4 and B71) (Gardner, 1977; Sasaki et al., 2013). Again, we would expect motifs 1c-d424

and 1f-g to occur with the same frequency if the detected connections occurred by chance. However,425



• What are the statistical properties of firing of each neuron?


• Are the spikes in different neurons related?


• Is one neuron’s spike excites another neuron to spike? 


• Is one neuron’s spike inhibits another neuron from firing?


• What is the anatomical connectivity graph of these neurons?


• What is the functional connectivity graph of these neurons?
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Fig. 9. Patterns of connectivity of the preparation in Fig. 8. A: The inferred connectivity diagram. B: All possible three-cell

motifs containing 2 – 3 connections. Motifs that were present in the examples in Fig. 5-7 and were correctly identified are

marked by asterisks. Motifs that were not detected by DI are indicated with a white background. C: Indegrees and outdegrees

of neurons. Neurons without any connections are not shown. This graph shows neurons that primarily receive connections on

the left and those that send out connections on the right. D: Number of occurance for each motif. The labels correspond to

the indice of the motifs in Panel B. Motifs that were not detected by DI are not shown.

motifs 1c, 1f and 1g were not detected. Motif 2d includes a neuron with a direct connection and a426

feedforward excitatory connection to a single neuron (network in Fig. 5A2). In a random network, we427

would expect 2c and 2d to occur with the same frequency however the 2c motif was not present. Motif428

3g should receive special attention because it could possibly be an oscillator. These results indicate that429

there may be a preferred pattern of connectivity for the feeding CPG. These data indicate that the method430

will be fruitful for analyzing the general features of the functional connectivity of neurons in the buccal431

ganglion.432
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Fig. 9. Patterns of connectivity of the preparation in Fig. 8. A: The inferred connectivity diagram. B: All possible three-cell

motifs containing 2 – 3 connections. Motifs that were present in the examples in Fig. 5-7 and were correctly identified are

marked by asterisks. Motifs that were not detected by DI are indicated with a white background. C: Indegrees and outdegrees

of neurons. Neurons without any connections are not shown. This graph shows neurons that primarily receive connections on

the left and those that send out connections on the right. D: Number of occurance for each motif. The labels correspond to

the indice of the motifs in Panel B. Motifs that were not detected by DI are not shown.

motifs 1c, 1f and 1g were not detected. Motif 2d includes a neuron with a direct connection and a426

feedforward excitatory connection to a single neuron (network in Fig. 5A2). In a random network, we427

would expect 2c and 2d to occur with the same frequency however the 2c motif was not present. Motif428

3g should receive special attention because it could possibly be an oscillator. These results indicate that429

there may be a preferred pattern of connectivity for the feeding CPG. These data indicate that the method430

will be fruitful for analyzing the general features of the functional connectivity of neurons in the buccal431

ganglion.432

Inhibitory
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marked by asterisks. Motifs that were not detected by DI are indicated with a white background. C: Indegrees and outdegrees

of neurons. Neurons without any connections are not shown. This graph shows neurons that primarily receive connections on

the left and those that send out connections on the right. D: Number of occurance for each motif. The labels correspond to

the indice of the motifs in Panel B. Motifs that were not detected by DI are not shown.

motifs 1c, 1f and 1g were not detected. Motif 2d includes a neuron with a direct connection and a426

feedforward excitatory connection to a single neuron (network in Fig. 5A2). In a random network, we427

would expect 2c and 2d to occur with the same frequency however the 2c motif was not present. Motif428

3g should receive special attention because it could possibly be an oscillator. These results indicate that429

there may be a preferred pattern of connectivity for the feeding CPG. These data indicate that the method430

will be fruitful for analyzing the general features of the functional connectivity of neurons in the buccal431

ganglion.432
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• Neurons do not independently fire and their spike probabilities are not 
identically distributed


• The stimulus and the functionality is coded in the spike pattern of a 
population of neurons
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• In many physical systems, the data symbols in time are not independent or 
identically distributed.


• Here s is the context, that is the past observed values  

• Krichevsky–Trofimov (KT) estimator is a powerful technique to estimate 
probability of sequences.


• For discrete valued data


• Data driven with no assumptions on independence and identically 
distributed symbols

pXi(x) 6= pXj (x) or pXi|s(x) 6= pXi(x)
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01001010?..

past values:  
the context

probability of  
this symbol?

0

0
0

0

0
0
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1

1

1

1

1
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• Example 5.3


• Assume binary data



• KT on a tree 01001010…

past values:  
the context

probability of  
this symbol?

0

0
0

0

0
0

0

1

1

1

1

1

1

1
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01001010…

past values:  
the context

probability of  
this symbol?

0

0
0

0

0
0

0

1

1

1

1

1

1

1

p(X3 = 0|X1 = 0, X2 = 1) =
0 + 1/2

0 + 1
= 1/2

a parameter to fudge to have probabilities
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01001010…

past values:  
the context

probability of  
this symbol?

0

0
0

0

0
0

0

1

1

1

1

1

1

1

p(X3 = 0|X1 = 0, X2 = 1) =
0 + 1/2

0 + 1
= 1/2

that 1/2 fudge parameter times the size of the alphabet
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past values:  
the context

probability of  
this symbol?

0

0
0

0

0
0

0

1

1

1

1

1

1

1

p(X3 = 0|X1 = 0, X2 = 1) =
0 + 1/2

0 + 1
= 1/2

how many times we have seen 0 given this context?
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01001010…

past values:  
the context

probability of  
this symbol?
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0
0

0

0
0

0

1

1

1
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1

1

p(X3 = 0|X1 = 0, X2 = 1) =
0 + 1/2

0 + 1
= 1/2

how many times we have seen this context?
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01001010…

past values:  
the context

probability of  
this symbol?

0

0
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0

0
0

0

1

1

1

1

1

1

1

how many times we have seen 0 given this context?

p(X4 = 0|X1 = 0, X2 = 1, X3 = 0) =
0 + 1/2

0 + 1
= 1/2
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01001010…

past values:  
the context

probability of  
this symbol?

0

0
0

0

0
0

0

1

1

1

1

1

1

1

how many times we have seen 0 given this context?

p(X5 = 0|X2 = 1, X3 = 0, X4 = 0) =
0 + 1/2

0 + 1
= 1/2
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• After a few steps, a familiar context appears
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how many times we have seen 0 given this context?
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p(X9 = 0|X6 = 0, X7 = 1, X8 = 0) =
1 + 1/2

2 + 1
= 1/2



01001010…

past values:  
the context

probability of  
this symbol?
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0
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1

1

1
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how many times we have seen this context?

p(X9 = 0|X6 = 0, X7 = 1, X8 = 0) =
1 + 1/2

2 + 1
= 1/2



• If data was assumed to be i.i.d. 


• Best estimate of probability of zero = 5/8


• Without i.i.d assumption and with our context 


• Best estimate of probability of zero = 1/2


• If the context was a little different—in one value 


• Best estimate of probability of zero = 1/4
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• Example 5.4 01011010…

past values:  
the context

probability of  
this symbol?
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0
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1

1

1

1
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how many times we have seen this context?

p(X9 = 0|X6 = 0, X7 = 1, X8 = 0) =
0 + 1/2

1 + 1
= 1/4
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p̂(X = 0|010) = 1/4
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p̂(X = 0|101) = 1/2

p̂(X = 0|010) = 1/4



01011010…

past values:  
the context

probability of  
this symbol?

0
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1

1

1

1

1
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p̂(X = 0|111) = 1/2

p̂(X = 0|101) = 1/2

p̂(X = 0|010) = 1/4



• A universal method to compute the joint probability


• Where 

�155

p̂X = p̂
Xn|X(n�1)

1
p̂
X(n�1)

1
= p̂

Xn|X(n�1)
1

p̂
X(n�1)|X

(n�2)
1

p̂
X(n�2)

1

= p̂
Xn|X(n�1)

1
p̂
X(n�1)|X

(n�2)
1

. . . p̂X2|X1
p̂X1

Xn
1 = (X1, X2, . . . , Xn)



• The density estimator


• The KT algorithm


• The tree structure


• Converges to the true density


• Plugin estimator

�156

Ĥ(X) = �
X

i2{1,...,n}

p̂X log p̂X



• Entropy of continuous valued random variables


• Estimating the entropy


• Plugin estimator


• How does Histogram estimate perform?

h(X) = �
Z

x
fX(x) log fX(x)dx
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• Example 5.5


• Data: 
93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6
5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90
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• Histogram of data


• Data: 
93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6
5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90
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• Histogram of data


• Data: 
93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6
5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90
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• Entropy of continuous valued random variables


• Estimating the entropy


• Plugin estimator


• Histogram estimator performs poorly for high dimensional data 


• Extreme dependence on bin size, even in one dimensional data

h(X) = �
Z

x
fX(x) log fX(x)dx
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Xn
1 = (X1,X2, . . . ,Xn) where Xi 2 <d



• Kernel density estimation (Parzen’s window)


• Based on n samples of d dimensional data
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Xn
1 = (X1,X2, . . . ,Xn) where Xi 2 <d



• The concept:


• Consider the probability of a mass in a region


• That is, the probability of a point being inside of area A

P =

Z

A
fX(x)dx

�163

fX

x1 x2 x3 x4
x xxx x

fX(x)



• The concept:


• Consider the probability “mass” in a region


• That is, the probability of x being inside of area A 

• The total number of data points is n 


• The probability of k points being inside region A is 

P =

Z

A
fX(x)dx

�164

P k



• The total number of data points is n 


• Probability of k out of n be inside region A is 

Pr(n, k) =

✓
n

k

◆
P k(1� P )n�k
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P =

Z

A
fX(x)dx



• For large n, the (average) number of points inside the region


• If the region is assumed to be small then the density will be approximately 
constant

k ⇡ nP

P ⇡ fXVA
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P =

Z

A
fX(x)dx

where VA is the volume of A



• If the region is assumed small then the density will be approximately constant


• The probability density function over a small region, however, with enough 
points inside is

P ⇡ fXVA

fX ⇡ k

nVA
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P =

Z

A
fX(x)dx



• If we fix the volume and determine k from the data


• We will have KDE (Parzen’s window)


• If we fix k and determine the volume 


• We will have K-nearest neighbor (k-NN)
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• Recall the density was approximated as


• Then, in KDE the volume is fixed. Example of fixed volume hypercube


• If the data falls inside the cube it counts as one.

fX ⇡ k

nVA
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K(x) =

⇢
1 if |x(m)|  1/2,m = 1, 2, . . . , d
0 otherwise



• If the region was a hypercube with side h then


• Since the point        is inside the hypercube


• Then, the total number of data points inside the kernel is 

K(
X�Xi

h
) will be 1

k =
nX

i=1

K(
X�Xi

h
)
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xi



• Example 5.6


• An illustrative example
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fX

x1 x2 x3 x4
x xxx x

fX(x)
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volume fX
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xxx x
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xxx x

volume fX

xxx x

xxx x

xxx x

xxx x

x1 x2 x3 x4

K(x� x3)

x
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xxx x

volume fX

xxx x

xxx x

xxx x

xxx x

x1 x2 x3 x4

K(x� x4)

K(x� x3)
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xxx x

volume fX

xxx x

xxx x

xxx x

xxx x

x1 x2 x3 x4

K(x� x4)

K(x� x3)

K(x� x2)

K(x� x1) x



• The KDE


• Using hypercube has similar rough boundaries as histogram approach does


• A candidate kernel is Gaussian

K(x) / e�x2
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f̂h(x) =
1

nhd

nX

i=1

K(
x� xi

h
)

fX ⇡ k

nVA



• Example 5.7


• KDE example with small h
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• Moderately small h
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• Mid range value of h
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• Large h
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• The parameter h controls smoothness of resulting estimate


• Choice of h is critical


• There are still issues with KDE 


• Large dimensions 


• We can not guarantee to have enough points in each area A
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• K nearest neighbor is a powerful alternative to KDE


• With k-NN, we fix the number of points in a region


• The k-NN estimate is 

fX ⇡ k

nVA

f̂X(x) =
k

nV
with V as the volume with k points
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• For a point x to calculate density of the random vector at x, that is,


• The distance


• Choose k nearest neighbors among all points
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fX(x)

fX

x1 x2 x3 x4
x xxx x

fX(x)

0  D3  D4  D2  D1

Di = ||x� xi||2 =

vuut
dX

m=1

(x(m) � x(m)
i )2



• For a point x to calculate density of the random vector at x, that is,


• Choose 3 nearest neighbors among all points then calculate the volume
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fX(x)

fX

x1 x2 x3 x4
x xxx x

fX(x)

f̂X(x) =
k

nV
with V as the volume with k points



• Blue density is the ground truth


• Red is the k-NN estimated density

�186



`

n=50 n=250

k=1

k=10

k=20

k=50
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• These are examples of two density estimators as plugins for estimating


• Entropy


• Mutual information


• Directed information


• Coherence and mutual information in frequency 

ĥ(X) = �
Z

x
f̂X(x) log f̂X(x)dx

Î(X;Y ) = ĥ(X)� ĥ(X|Y )

Î(Xn
1 ! Y n

1 ) = ĥ(Y n
1 )� ĥ(Y n

1 ||Xn
1 )
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MIX,Y (f, f) = I(dX̃f ; dỸf ) = � log[1� CX,Y (f)]



Summary for Set I

• A probabilistic approach to dealing with recorded signals and data


• Avoid unnecessary assumption of a model


• Data driven techniques to estimate features in data


• correlation, dependence, causality, coherence
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