Learning from Sensor Data: Set I

Behnaam Aazhang

J.S. Abercombie Professor

Electrical and Computer Engineering Rice University

Course Outline

- 1. Preliminaries
- 2. A probabilistic approach (books by Hajek and Mackay)
- Statistical characteristics of data
- Statistical analysis of the performance
- 3. Data (book by Hajek)
- Continuous time
- Discrete time
- 4. Frameworks for learning from data (MacKay)
- Parametric models
- Non-parametric-data driven
- 5. Estimating key statistical metrics from data (Bishop 2.4, 2.5)
- Estimating probability mass function
- Density estimation
- Plugin estimators
- Kernel density estimation (KDE)
- K nearest neighbor (k-NN)

Set II

- 6. Data representation (Bishop 8)
- Graphical modeling
- Directed graphs
- Bayesian network
- Undirected graphs
- Markov random fields
- Factor graphs

1. Preliminaries

- Engineering is all about designing a system with constraints
- or more often, "improving" the functionality of a physical system within some practical constraints
- The system could be anything from a bridge to the space station to the world wide web
- Examples of physical systems could be our environment, a biological system, or a factory
- The constraints could be the form factor, the cost, power, time, among others
- Engineers use fundamental tools like mathematics, physics, chemistry, and economics
- For years their starting point has been building a model
- Model of the system
- Model of the constraints
- The impact of their work has been limited by the accuracy of their model
- The model is often also used to evaluate the performance
- Despite possible limitations of models we have thousands of engineering marbles
- Golden gate bridge
- World wide web
- Cellular LTE
- Robots
- "Essentially all models are wrong but some are useful" G. Box (1987)
- A move from model based engineering to data based engineering
- Can we engineer based on data?
- A precursor is "inference" where we try to find the most appropriate explanation for data
- Over the last decade there has been a data deluge
- Incredible connectivity
- Cheap storage and computational machines
- Availability of sensors
- There are many positives and negatives to the explosion of data
- Let's only focus on the positives
- Learning from data
- A probabilist approach
- Data could be noisy
- Model could have inherent uncertainty
- Insufficient size of data set
- A probabilistic inference may be desirable
- Example: 80\% chance of rain

2. A probabilistic approach

- Input space $=$ feature space $=$ signal domain \mathcal{X}
- Output space $=$ response space $=$ signal range \mathcal{Y}
- Examples:
- Classification

$$
\mathcal{X}=\Re^{d} \text { and } \mathcal{Y}=\{0,1\}
$$

- Estimation

$$
\mathcal{X}=\Re \text { and } \mathcal{Y}=\Re \text { where } Y=g(X)+Z
$$

- In many systems and problems, input (data) denoted as X and output by Y
- Assume a joint distribution of (X, Y) as $F_{X, Y}$
- Cumulative distribution function (CDF) and joint CDF

$$
F_{X}(a)=P\{X \leq a\} \text { and } F_{X, Y}(a, b)=P\{X \leq a \text { and } Y \leq b\}
$$

- Probability density function (PDF) and joint PDF if variables are continuous valued

$$
\begin{aligned}
F_{X}(a) & =\int_{-\infty}^{a} f_{X}(x) d x \\
F_{X, Y}(a, b) & =\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

- For discrete data we define probability mass function (PMF)

$$
F_{X}(a)=\sum_{x_{i} \leq a} p_{X}\left(x_{i}\right) \text { where } p_{X}\left(x_{i}\right)=P\left(X=x_{i}\right)
$$

- Joint probability mass function

$$
F_{X, Y}(a, b)=\sum_{x_{i} \leq a} \sum_{y_{j} \leq b} p_{X, Y}\left(x_{i}, y_{j}\right) \text { where } p_{X, Y}\left(x_{i}, y_{j}\right)=P\left(X=x_{i}, Y=y_{j}\right)
$$

- Conditional distribution and conditional probability mass function

$$
F_{Y \mid X}\left(b \mid x_{i}\right)=\sum_{y_{j} \leq b} p_{Y \mid X}\left(y_{j} \mid x_{i}\right)
$$

- If X and Y are jointly discrete

$$
p_{Y \mid X}\left(y_{j} \mid x_{i}\right)=\frac{p_{X, Y}\left(x_{i}, y_{j}\right)}{p_{X}\left(x_{i}\right)}
$$

- Conditional distribution and conditional density

$$
F_{Y \mid X}(y \mid x) \text { and } F_{Y \mid X}(b \mid x)=\int_{-\infty}^{b} f_{Y \mid X}(y \mid x) d y
$$

- If X and Y are jointly continuous then

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

- The expectation operator

$$
\begin{gathered}
E[g(X)]=\int_{\Re} g(x) d F_{X}=\int_{\Re} g(x) f_{X} d x \\
E[g(Y) \mid X]=\int_{\Re} g(y) d F_{Y \mid X}=\int_{\Re} g(y) f_{Y \mid X} d y \\
E[g(X, Y)]=\int_{\Re} g(x, y) d F_{X, Y}=\int_{\Re^{2}} g(x, y) f_{X, Y} d x d y
\end{gathered}
$$

- Similarly if X is discrete

$$
E[g(X)]=\int_{\Re} g(x) d F_{X}=\sum_{i} g\left(x_{i}\right) p_{X}\left(x_{i}\right)
$$

- X and Y are independent if

$$
\begin{gathered}
F_{X, Y}(a, b)=F_{X}(a) F_{Y}(b) \forall a \text { and } b \\
\text { or } f_{X, Y}(x, y)=f_{x}(x) f_{Y}(y) \forall x \text { and } y
\end{gathered}
$$

- Correlation between X and Y

$$
R_{X, Y}=E\left[X Y^{*}\right] \text { and } C_{X, Y}=E\left[X Y^{*}\right]-E[X] E[Y]^{*}
$$

- Mutual information between X and Y

$$
I(X ; Y)=\int_{\Re^{2}} f_{X, Y} \log \left(\frac{f_{X, Y}(x, y)}{f_{X}(x) f_{Y}(y)}\right) d x d y
$$

- X and Y are independent if

$$
\begin{gathered}
F_{X, Y}(a, b)=F_{X}(a) F_{Y}(b) \forall a \text { and } b \\
\text { or } p_{X, Y}\left(x_{i}, y_{j}\right)=p_{X}\left(x_{i}\right) p_{Y}\left(y_{j}\right) \forall i \text { and } j
\end{gathered}
$$

- Correlation between X and Y

$$
R_{X, Y}=E\left[X Y^{*}\right] \text { and } C_{X, Y}=E\left[X Y^{*}\right]-E[X] E[Y]^{*}
$$

- Mutual information between X and Y

$$
I(X ; Y)=\sum_{i, j} p_{X, Y}\left(x_{i}, y_{j}\right) \log \frac{p_{X, Y}\left(x_{i}, y_{j}\right)}{p_{X}\left(x_{i}\right) p_{Y}\left(y_{j}\right)}
$$

- Correlation coefficients

$$
-1 \leq \rho_{X, Y}=\frac{C_{X, Y}}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \leq 1
$$

- Mutual information

$$
0 \leq I(X ; Y)
$$

- All these measure relationship among variables
- Correlation, independence, and mutual information
- Example 2.1: If X and Y are independent
- Then $\quad C_{X, Y}=0$ and $I(X ; Y)=0$
- If X is zero mean and has a symmetric density and Y is squared X then
- Are X and Y independent?
- Are they uncorrelated?
- Is their mutual information zero?
- Mutual information seems to be a powerful metric of dependency
- The origin of mutual information dates back to late 1940s.
- It is based on the concept of entropy from thermodynamics and statistical mechanics from mid 1800s.
- We can define a triple probability space to describe uncertainty of our system

$$
(\Omega, \mathcal{F}, P)
$$

- The outcome of the experiment $w \in \Omega$
- The universal set of possible outcomes Ω
- A relevant event A as a collection of outcomes of interest $w \in A$
- The probability of an event $P(A)$
- A random variable $\quad X:(\Omega, \mathcal{F}) \rightarrow(\Re, \mathbb{B}(\Re))$
- Information content of an event $-\log _{2}(P(A))$ where $A \in \mathcal{F}$
- Average information content of a discrete random variable

$$
H(X)=-\sum_{i} p_{X}\left(x_{i}\right) \log p_{X}\left(x_{i}\right)
$$

- It is the entropy

$$
H(X) \geq 0
$$

- Differential entropy of a continuous random variable

$$
h(X)=-\int_{x} f_{X}(x) \log f_{X}(x) d x
$$

- Differential entropy can be negative.
- It is best used comparing $h(X)$ and $h(Y)$, hence the concept of differential
- An alternative, formulation

$$
\begin{aligned}
& I(X ; Y)=H(Y)-H(Y \mid X)=H(X)-H(X \mid Y) \\
& I(X ; Y)=h(Y)-h(Y \mid X)=h(X)-h(X \mid Y)
\end{aligned}
$$

- Yet another formulation based on a distance measure
- The "distance" between two probability measures (PDF or PMF)
- Kullback-Leibler distance

$$
D_{K L}\left(f_{X} \| g_{X}\right)=\int_{x} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)} d x
$$

$$
D_{K L}(f \| g) \geq 0
$$

$$
I(X ; Y)=D_{K L}\left(f_{X, Y} \| f_{X} f_{Y}\right)
$$

- Recall inference is a critical outcome of many problems in data analysis
- In all inference problems, we have an objective, therefore, we have loss and risk
- Loss function

$$
\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \Re
$$

- Examples are

$$
\begin{aligned}
& \text { if } \mathcal{Y}=\{0,1\} \text { then } \ell(y, \hat{y})=1 \text { if } y \neq \hat{y} \\
& \text { if } \mathcal{Y}=\Re \text { then } \ell(y, \hat{y})=(y-\hat{y})^{2} \text { or } E(Y-\hat{Y})^{2}
\end{aligned}
$$

- Risk of inference
- Finding the output corresponding an input

$$
g: \mathcal{X} \rightarrow \mathcal{Y}
$$

- The performance of a given mapping

$$
R(g)=E[\ell(Y, g(X))]
$$

- The optimum mapping

$$
R^{*}=\inf _{g} R(g)=\inf _{g} E[\ell(Y, g(X))]
$$

- Example 2.2
- The connection between estimation and information theory
- Assume data $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\top}$
- Data is assumed independent and identically distributed with probability mass function $p_{X_{i}}(x)$
- The objective:
- Find a distribution for the data that maximizes the likelihood of the data
- Find the probability mass function that generated the data, that is,

$$
p_{X_{i}} \text { for observed }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- Can data provide a mechanism to find the underling distribution that generated the data?
- Find the model among the set of possible models that maximizes the likelihood of generating the data.
- The maximum likelihood estimate of the probability among a set is
$\arg \max _{q \in \mathcal{Q}} q_{\mathbf{X}}(\mathbf{x})=\arg \max _{q \in \mathcal{Q}} \log q_{\mathbf{X}}(\mathbf{x})=\arg \min _{q \in \mathcal{Q}}-\log q_{\mathbf{X}}(\mathbf{x})$
- q is a possible probability mass function that could have generated the data
- q is the probability that $x=0$
- An appropriate loss function could be the negative log loss
- The loss function

$$
\ell(y, \hat{y})=\ell(q, \mathbf{X})=-\log q_{\mathbf{X}}
$$

- The risk

$$
\begin{aligned}
R(q) & \left.=E[\ell(y, \hat{y})]=E_{p}[\ell(q, \mathbf{X})]=-E_{p}[\log q \mathbf{x})\right] \\
& =D_{K L}(p \| q)+E_{p}[\ell(p, \mathbf{X})] \\
& =D_{K L}(p \| q)+R(p)
\end{aligned}
$$

- The risk is minimized with $q=p$
- The minimum risk is

$$
R^{*}=E_{p}[\ell(p, \mathbf{X})]=H(p)
$$

- A specific case is binary independent identically distributed sequence of data

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\top} \text { with } X_{i} \in\{0,1\}
$$

- Ground truth

$$
p_{\mathbf{X}}(\mathbf{x})=\left[p_{X_{i}}\left(x_{i}\right)\right]^{n}
$$

- Find a distribution for the data that maximizes the likelihood of the data

$$
\mathbf{x}=(0,1,0,0,0,1)
$$

- Since the data samples are independent

$$
\arg \max _{q \in \mathcal{Q}} q_{\mathbf{X}}(\mathbf{x})=\arg \max _{q \in \mathcal{Q}} \prod_{i=1}^{n} q_{X_{i}}\left(x_{i}\right)
$$

- Since data are binary

$$
\arg \max _{q \in \mathcal{Q}} q_{\mathbf{X}}(\mathbf{x})=\arg \max _{q \in[0,1]} q^{l}(1-q)^{(n-l)}
$$

- The maximum likelihood estimate of the probability q is derived

$$
\frac{d\left(q^{l}(1-q)^{(n-l)}\right)}{d q}=0
$$

- The most likely probability is $q^{*}=\frac{l}{n}$
- In the specific case of $\mathbf{x}=(0,1,0,0,0,1)$
- The ML estimate is $\quad q^{*}=2 / 3$
- Obviously the ground truth is not known.

3. Data

- Temporal observations $X_{1}, X_{2}, \ldots, X_{n}$
- Temporal relationships $R_{X_{i}, X_{j}}$
- Spatial observations $\quad X^{(1)}, X^{(2)}, \ldots, X^{(d)}$
- Spatial relationships $R_{X^{(k)}, X^{(l)}}$
- 3 illustrative examples of data

Intracardiac Electrogram Recordings - Catheter Placement

- High right atrial
- His* bundle

- Coronary sinus
- Right ventricle apex
- A very different example,
- Voltage sensitive dye

- Often recorded data are continuous time signals

$$
X_{t}^{(1)}(w), X_{t}^{(2)}(w), \ldots, X_{t}^{(d)}(w) \forall t \text { and } w \in \Omega
$$

- where w is an outcome of the random experiment and Ω is the set of all outcomes
- Discrete time data is often much more desirable
- It can be stored
- It is easy to analyze and process with digital filters
- Continuous time signals can be represented with discrete time data
- With no loss of information

$$
X_{t}(w) \forall t \rightarrow X_{1}(w), X_{2}(w), \ldots, X_{n}(w)
$$

- Sampling
- Projection
- Sampling and reconstruction

$$
X_{t}(w)=\sum_{n=-\infty}^{+\infty} X_{n T}(w) \frac{\sin (W[t-n T])}{W(t-n T)}
$$

- Where W is the bandwidth of the power spectral density and $T=\frac{\pi}{W}$
- The power spectral density of the process is $S_{X}(f)=\mathcal{F}\left\{R_{X}(\tau)\right\}$
- The autocorrelation is $R_{X}(\tau)=E\left\{X_{t+\tau} X_{t}^{*}\right\}$
- The data signal is assumed to be wide sense stationary (wss)
- Example 3.1 : Assume that the process is ideally band limited, that is,

$$
S_{X}(f)=\left\{\begin{aligned}
\frac{\mathcal{N}_{0}}{2} & \text { if } f \in[-W, W] \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- In this example,

$$
R_{X}(\tau)=\frac{\mathcal{N}_{0}}{2 T} \frac{\sin (W \tau)}{W \tau}
$$

- Where $T=\frac{\pi}{W}$
- And $E\left[X_{n T} X_{m T}^{*}\right]=0$ if $m \neq n$
- If the data signal is wide sense stationary
- That is,

$$
R_{X}(\tau)=E\left\{X_{t+\tau} X_{t}^{*}\right\} \forall \tau \text { not a function of } t
$$

- The discrete samples carry all the information in the data signal

$$
\ldots, X_{-T}, X_{0}, X_{T}, X_{2 T}, \ldots, X_{n T}
$$

- Since we have

$$
X_{t}(w)=\sum_{n=-\infty}^{+\infty} X_{n T}(w) \frac{\sin (W[t-n T])}{W(t-n T)}
$$

- The discrete samples carry all the information in the data signal

$$
\ldots, X_{-T}, X_{0}, X_{T}, X_{2 T}, \ldots, X_{n T}
$$

- These samples will be uncorrelated (independent if the signal is Gaussian) if the spectrum is ideally band-limited.
- No need to carry the sampling period in the notation

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\top}
$$

- In general, for band limited processes, the samples are correlated.
- The samples can be made uncorrelated using whitening linear filters.
- Define zero mean process $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\top}$
- The $n \times n$ covariance matrix $\quad \Sigma_{X}=E\left[\mathbf{X X}^{\top}\right]$
- It is square
- non-negative definite
- Hermitian matrix
- The covariance matrix $\quad \Sigma_{X}=E\left[\mathbf{X X}^{\top}\right]$
- If the covariance matrix is positive definite
- Linear transformation $\mathbf{Y}=A \mathbf{X}$
- The matrix A could be an $m \times n$ matrix and \boldsymbol{Y} will then be $m \times 1$
- Then, the $m \times m$ covariance matrix of \boldsymbol{Y} is $\quad \Sigma_{Y}=A \Sigma_{X} A^{\top}$
- If $\quad \Sigma_{X}=C C^{\top}$ then $\mathbf{Y}=C^{-1} \mathbf{X}$ has $\Sigma_{Y}=I$
- Example 3.2

$$
\begin{gathered}
\Sigma_{Y}=A \Sigma_{X} A^{\top} \\
\Sigma_{X}=C C^{\top} \text { then } \mathbf{Y}=C^{-1} \mathbf{X} \text { has } \Sigma_{Y}=I \\
\left(\begin{array}{rrr}
4 & 12 & -16 \\
12 & 37 & -43 \\
-16 & -43 & 98
\end{array}\right)=\left(\begin{array}{rrr}
2 & 0 & 0 \\
6 & 1 & 0 \\
-8 & 5 & 3
\end{array}\right)\left(\begin{array}{rrr}
2 & 6 & -8 \\
0 & 1 & 5 \\
0 & 0 & 3
\end{array}\right) \\
\mathbf{Y}=\quad\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
-3 & 1 & 0 \\
19 / 3 & -5 / 3 & 1 / 3
\end{array}\right] \mathbf{X}
\end{gathered}
$$

Original Data

Whiten:

- Example 3.3
- One interpretation
- Different elements of the original data are correlated

- if one element is 1.2 it is very likely that the other element is close to 1.
- When data is whitened, then in the processed data, if one element is 1.2 the other one is still widely distributed
- Still no information is lost
- Sampling "would not work" when the random signal is not wide sense stationary
- Even if wss, the samples could be, often are, correlated
- Karhunen-Loeve expansion of a more general random signal

$$
R_{X}(t, s)=E\left[X_{t} X_{s}^{*}\right]
$$

- The autocorrelation

$$
\int_{-\infty}^{+\infty} R_{X}(t, s) \alpha_{n}(s) d s=\lambda_{n} \alpha_{n}(t) \forall t
$$

- Eigenfunctions of the autocorrelation function
- Example 3.4
- A concept analogous to eigenvectors of a matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1} \text { and }\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \mathbf{x}_{2}=\lambda_{2} \mathbf{x}_{2}
$$

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \lambda_{1}=3 \text { and } \mathbf{x}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \lambda_{2}=1
$$

- The eigenvectors are orthogonal since A is a symmetric matrix

$$
<\mathbf{x}_{1}, \mathbf{x}_{2}>=0
$$

- Analogous to eigenvectors, eigenfunctions are also orthogonal

$$
\begin{gathered}
\int_{-\infty}^{+\infty} \alpha_{n}(t) \alpha_{m}^{*}(t) d t=\lambda_{n} \delta_{n, m} \\
\delta_{n, m}= \begin{cases}1 & \text { if } n=m \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

- It is intuitive to expect that the projection of the data signal on these eigenfunctions would be orthogonal and uncorrelated if the random process was zero mean.
- Then, we can write

$$
X_{t}(w)=\sum_{n=0}^{+\infty} \alpha_{n}(t) Z_{n}(w)
$$

- Where $E\left[Z_{n} Z_{m}^{*}\right]=\delta_{n, m}$

$$
\begin{gathered}
Z_{n}(w)=\lambda_{n}^{-1} \int_{-\infty}^{+\infty} X_{t}(w) \alpha_{n}^{*}(t) d t \\
\alpha_{n}(t)=E\left[X_{t} Z_{n}^{*}\right] \forall t \\
\int_{-\infty}^{+\infty} \alpha_{n}(t) \alpha_{m}^{*}(t) d t=\lambda_{n} \delta_{n, m}
\end{gathered}
$$

- Where

$$
\delta_{n, m}= \begin{cases}1 & \text { if } n=m \\ 0 & \text { otherwise }\end{cases}
$$

- The information is represented in $Z_{0}(w), Z_{1}(w), \ldots, Z_{n}(w), \ldots$
- The structure is represented in $\alpha_{0}(t), \alpha_{1}(t), \ldots, \alpha_{n}(t), \ldots$
- All because we have

$$
X_{t}(w)=\sum_{n=0}^{+\infty} \alpha_{n}(t) Z_{n}(w)
$$

- Similar to sampling

$$
X_{t}(w)=\sum_{n=-\infty}^{+\infty} X_{n T}(w) \frac{\sin (W[t-n T])}{W(t-n T)}
$$

- where samples carry all the information

- Projections on eigenfunctions carry all the information

$$
Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{n}, \ldots
$$

- Assume that the data is discrete time stochastic process
- Parametric models with a few parameters
- Gaussian, linear, Poisson, ...
- Data driven-"model free"
- Discrete valued time series
- Continuous valued time series
- Assume the data is

$$
X_{1}^{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \text { where } X_{i} \in \Re
$$

- Then the mutual information between two time series X_{1}^{n} and Y_{1}^{n}
- The dependency of one set of data with another
- Example 3.5
- Two small sets of data and their dependency

$$
I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)=I\left(X_{1}, X_{2} ; Y_{1}\right)+I\left(X_{1}, X_{2} ; Y_{2} \mid Y_{1}\right)
$$

- Where

$$
I\left(X_{1}, X_{2} ; Y_{1}\right)=I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{1} \mid X_{1}\right)
$$

- Recall that

$$
I\left(X_{1} ; Y_{1}\right)=h\left(X_{1}\right)-h\left(X_{1} \mid Y_{1}\right)=h\left(Y_{1}\right)-h\left(Y_{1} \mid X_{1}\right)
$$

- Example 3.6
- Lets start with dependencies between two single random variables X and Y.
- Example 3.6
- Assume X and Z are each a Gaussian random variable and independent
- The model $Y=X+Z$, that is, Y is a noisy but direct observation of X

- Example 3.6
- Assume X and Z are each a Gaussian random variable and independent
- The model $Y=X+Z$, that is, Y is a noisy but direct observation of X

$$
I(X ; Y)=h(Y)-h(Y \mid X)
$$

- Example 3.6
- Assume X and Z are each a Gaussian random variable and independent
- The model $Y=X+Z$, that is, Y is a noisy but direct observation of X

- Note that both X and Z are Gaussian and that $h(Y \mid X)=h(Z)$

$$
h(X)=-\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-x^{2} / 2 \sigma_{X}^{2}} \log \left(\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-x^{2} / 2 \sigma_{X}^{2}}\right) d x
$$

- Note that both X and Z are Gaussian and that $h(Y \mid X)=h(Z)$

$$
h(X)=-E_{X}\left[\log \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}}+\log e^{-X^{2} / 2 \sigma_{X}^{2}}\right]
$$

- Note that both X and Z are Gaussian and that $h(Y \mid X)=h(Z)$

$$
h(X)=\frac{1}{2} \log 2 \pi \sigma_{X}^{2}+\frac{E\left[X^{2}\right]}{2 \sigma^{2}} \log e=\frac{1}{2}\left[\log 2 \pi \sigma_{X}^{2}+\log e\right]
$$

- Note that both X and Z are Gaussian and that $h(Y \mid X)=h(Z)$

$$
h(Y)=\frac{1}{2} \log 2 \pi e\left[\sigma_{X}^{2}+\sigma_{Z}^{2}\right] \quad h(Y \mid X)=\frac{1}{2} \log 2 \pi e \sigma_{Z}^{2}
$$

$$
I(X ; Y)=\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)
$$

- For comparison, let's examine the correlation between X and Y

$$
R_{X, Y} ?
$$

- For comparison, let's examine the correlation between X and Y.
- Recall

$$
R_{X, Y}=E\left[X Y^{*}\right] \text { and } C_{X, Y}=E\left[X Y^{*}\right]-E[X] E[Y]^{*}
$$

- In this example,

$$
R_{X, Y}=E\left[X Y^{*}\right]=E\left[X(X+Z)^{*}\right]=E[X(X+Z)]=\sigma_{X}^{2}
$$

- Compared to,

$$
I(X ; Y)=\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)
$$

- Back to time series

$$
X_{1}^{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \text { where } X_{i} \in \Re
$$

- Then the mutual information between two time series X_{1}^{n} and Y_{1}^{n}

$$
\begin{aligned}
I\left(X_{1}^{n} ; Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{n} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1}^{n} ; Y_{1}\right)+I\left(X_{1}^{n} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{n} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots
\end{aligned}
$$

- Also

$$
I\left(X_{1}^{n} ; Y_{1}^{n}\right)=h\left(Y_{1}^{n}\right)-h\left(Y_{1}^{n} \mid X_{1}^{n}\right)
$$

- Mutual information of two time series measure general "dependence" of the two time series as a whole
- No temporal information, no influence, nor causality
- It is often critical to measure causality.
- One data forecasting or influencing another
- Stock market
- Transportation
- Economics
- In this example it is easy to guess that X causes Y

- In this example it is not easy

Price of Arabica
 Granger causes price of Robusta

- Grainger causality
- If signal X causes signal Y then passed values of X should contain information that helps predict Y above and beyond the information contained in past values of Y alone
- Granger is defined based on a linear model assumption where Z is noise

$$
\begin{aligned}
& Y_{k+1}=a_{0} Y_{k}+a_{1} Y_{k-1}+\ldots+b_{0} X_{k}+b_{1} X_{k-1}+\ldots+Z_{k} \\
& X_{k+1}=c_{0} X_{k}+c_{1} X_{k-1}+\ldots+d_{0} Y_{k}+d_{1} Y_{k-1}+\ldots+Z_{k}^{\prime}
\end{aligned}
$$

- Example 3.7
- If the relationship were based on a linear autoregressive model

$$
\begin{aligned}
& X_{k+1}=0.3 X_{k}+Z_{k}^{\prime} \\
& Y_{k+1}=0.1 Y_{k}+0.2 X_{k}+Z_{k}
\end{aligned}
$$

- Does X cause Y or does Y cause X ?
- Past and current values of X can help better predict the future values of Y

$$
\begin{aligned}
& Y_{k+1}=a_{0} Y_{k}+a_{1} Y_{k-1}+\ldots+b_{0} X_{k}+b_{1} X_{k-1}+\ldots+Z_{k} \\
& X_{k+1}=c_{0} X_{k}+c_{1} X_{k-1}+\ldots+d_{0} Y_{k}+d_{1} Y_{k-1}+\ldots+Z_{k}^{\prime}
\end{aligned}
$$

- Testing hypotheses
- If the coefficients, b 's, are zero then X does not Granger cause Y
- If the coefficients, d 's, are zero then Y does not Granger cause X
- Granger causality quantifies the impact of coefficients b 's and d's.

$$
\begin{aligned}
& Y_{k+1}=a_{0} Y_{k}+a_{1} Y_{k-1}+\ldots+b_{0} X_{k}+b_{1} X_{k-1}+\ldots+Z_{k} \\
& X_{k+1}=c_{0} X_{k}+c_{1} X_{k-1}+\ldots+d_{0} Y_{k}+d_{1} Y_{k-1}+\ldots+Z_{k}^{\prime}
\end{aligned}
$$

- Test the hypothesis that setting b's to zero increases the residual variance of estimating

$$
\begin{aligned}
& C_{G}(X \rightarrow Y)=\log \frac{\sigma_{\hat{Y}}^{2}(\mathbf{0})}{\sigma_{\hat{Y}}^{2}(\mathbf{b})} \\
& C_{G}(Y \rightarrow X)=\log \frac{\sigma_{\hat{X}}^{2}(\mathbf{0})}{\sigma_{\hat{X}}^{2}(\mathbf{d})}
\end{aligned}
$$

- Shortcomings of Granger casualty
- The data is assumed to be linearly dependent in time.
- Autoregressive
- The two data sets are assumed to be linearly dependent
- The data sets are assumed to be Gaussian
- Stationarity is assumed
- The impact of using Granger on non-stationary data is not known
- Recall that mutual information does not capture temporal information

$$
\begin{aligned}
I\left(X_{1}^{n} ; Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{n} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1}^{n} ; Y_{1}\right)+I\left(X_{1}^{n} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{n} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots
\end{aligned}
$$

- A careful adjustment

$$
\begin{aligned}
I\left(X_{1}^{n} \rightarrow Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{i} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1}^{2} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{3} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots
\end{aligned}
$$

- Directed information is a measure of causality in relation between X and Y
- It is a universal quantity measuring
- influence
- predictability
- information flow
- Example 3.8

$$
Y_{n}=X_{n}+Z_{n}
$$

- with i.i.d.

$$
X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)
$$

$$
Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)
$$

independent

- with i.i.d.

$$
X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)
$$

$Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)$
$X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)$

$$
Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)
$$

$$
Y_{n}=X_{n}+Z_{n}
$$

$$
\begin{aligned}
I\left(X_{1}^{n} \rightarrow Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{i} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1}^{2} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{3} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1} ; Y_{2} \mid Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid Y_{1}, X_{1}\right)+\ldots \\
& =\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+0+\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+\ldots \\
& =\frac{n}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)
\end{aligned}
$$

$X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)$
$Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)$

$$
Y_{n}=X_{n}+Z_{n}
$$

$$
\begin{aligned}
I\left(X_{1}^{n} \rightarrow Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{i} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1}^{2} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{3} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1} ; Y_{2} \mid Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid Y_{1}, X_{1}\right)+\ldots \\
& =\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+0+\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+\ldots \\
& =\frac{n}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
X_{n} & \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right) \\
Z_{n} & \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)
\end{aligned}
$$

- The normalized, per time, mutual information and directed information

$$
\begin{gathered}
Y_{n}=X_{n}+Z_{n} \\
I(X \rightarrow Y)=I(Y \rightarrow X)=I(X ; Y)=\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)
\end{gathered}
$$

- Example 3.9

$$
Y_{n}=X_{n-1}+Z_{n}
$$

- With i.i.d.

$$
X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)
$$

$Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)$

independent

- With i.i.d.

$$
X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)
$$

$Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)$

independent $\quad Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)$

$$
\begin{aligned}
I\left(\dot{X}_{1}^{n} \rightarrow Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{i} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1}^{2} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{3} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1} ; Y_{2} \mid Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid Y_{1}, X_{1}\right)+\ldots \\
& =0+\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+0+\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+\ldots \\
& =\frac{n}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)
\end{aligned}
$$

independent $\quad Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)$

$$
\begin{aligned}
I\left(\dot{X}_{1}^{n} \rightarrow Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{i} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1}^{2} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{3} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{1} ; \widehat{\left.\left.Y_{2} \mid Y_{1}\right)+I\left|X_{2} ; Y_{2}\right| Y_{1}, X_{1}\right)+\ldots}\right. \\
& =0+\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+0+\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)+\ldots \\
& =\frac{n}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right)
\end{aligned}
$$

$X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)$

$$
Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)
$$

$$
Y_{n}=X_{n-1}+Z_{n}
$$

$$
\begin{aligned}
I\left(Y_{1}^{n} \rightarrow X_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(Y_{1}^{i} ; X_{i} \mid X_{1}^{i-1}\right) \\
& =I\left(Y_{1} ; X_{1}\right)+I\left(Y_{1}^{2} ; X_{2} \mid X_{1}\right)+I\left(Y_{1}^{3} ; X_{3} \mid X_{1}^{2}\right)+\ldots \\
& =I\left(Y_{1} ; X_{1}\right)+I\left(Y_{1} ; X_{2} \mid X_{1}\right)+I\left(Y_{2} ; X_{2} \mid X_{1}, Y_{1}\right)+\ldots \\
& =0+0+\ldots
\end{aligned}
$$

$X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)$

$$
Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)
$$

$$
Y_{n}=X_{n-1}+Z_{n}
$$

$$
\begin{aligned}
I\left(Y_{1}^{n} \rightarrow X_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(Y_{1}^{i} ; X_{i} \mid X_{1}^{i-1}\right) \\
& =I\left(Y_{1} ; X_{1}\right)+I\left(Y_{1}^{2} ; X_{2} \mid X_{1}\right)+I\left(Y_{1}^{3} ; X_{3} \mid X_{1}^{2}\right)+\ldots \\
& =I\left(Y_{1} ; X_{1}\right)+I\left(Y_{1} ; X_{2} \mid X_{1}\right)+I\left(Y_{2} ; X_{2} \mid X_{1}, Y_{1}\right)+\ldots \\
& =0+0 \stackrel{+}{+\ldots}
\end{aligned}
$$

$X_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{X}^{2}\right)$

$$
Z_{n} \sim \operatorname{Gaussian}\left(0, \sigma_{Z}^{2}\right)
$$

- Recall

$$
Y_{n}=X_{n-1}+Z_{n}
$$

- then

$$
\begin{aligned}
& I(X \rightarrow Y)=\frac{1}{2} \log \left(1+\frac{\sigma_{X}^{2}}{\sigma_{Z}^{2}}\right) \\
& I(Y \rightarrow X)=0
\end{aligned}
$$

- In these two examples Granger causality and directed information result in similar measures
- Since time series are
- Linearly related
- Gaussian
- It is not clear if Granger causality is the right metric in the coffee price example since the linearity model may or may not be valid.
- A nonlinear model

$$
Y_{k}=\beta_{1} X_{k}^{2}+\beta_{2} X_{k-1}^{2}+Z_{k}
$$

- where Z is Gaussian noise
- Can X help predict Y ?
- Can Y help predict X ?
- How about in these cases?

$$
Y_{k}=X_{k}^{2}+Z_{k} \text { or } Y_{k}=X_{k-1}^{2}+Z_{k}
$$

- A nonlinear model

$$
Y_{k}=\beta_{1} X_{k}^{2}+\beta_{2} X_{k-1}^{2}+Z_{k}
$$

- where Z is Gaussian noise

(b) $\beta_{2}=1-\beta_{1}$
- Directed information is a measure of causality in relation between X and Y
- It is a universal quantity measuring
- Influence
- Predictability
- Information flow
- Another important metric of relation between time series
- Coherence
- Another concept measuring relationship between two data sets
- Consider two zero mean random vectors X and Y
- The cross correlation is defined as

$$
R_{X, Y}\left(m, m^{\prime}\right)=E\left[X_{m} Y_{m^{\prime}}^{*}\right]
$$

- If the series are jointly wide sense stationary

$$
R_{X, Y}\left(m, m^{\prime}\right)=R_{X, Y}\left(m-m^{\prime}\right)
$$

- The cross power spectral density is defined as

$$
S_{X, Y}(f)=\mathcal{F}\left\{R_{X, Y}(k)\right\}=\sum_{k=-\infty}^{\infty} R_{X, Y}(k) e^{j 2 \pi k f}
$$

- Recall autocorrelation of a time series is

$$
R_{X}\left(m, m^{\prime}\right)=E\left[X_{m} X_{m^{\prime}}^{*}\right]
$$

- If the times series is wide sense stationary then

$$
R_{X}\left(m, m^{\prime}\right)=R_{X}\left(m-m^{\prime}\right)
$$

- The power spectral density is

$$
S_{X}(f)=\mathcal{F}\left\{R_{X}(k)\right\}=\sum_{k=-\infty}^{\infty} R_{X}(k) e^{j 2 \pi k f}
$$

- The coherence at a given frequency between two time series is defined as

$$
C_{X, Y}(f)=\frac{\left|S_{X, Y}(f)\right|^{2}}{S_{X}(f) S_{Y}(f)}
$$

- The coherence estimates the extend that Y can be predicted by X using optimum linear estimator
- It can be shown that

$$
0 \leq C_{X, Y}(f) \leq 1
$$

- If Y is a noiseless linear function of time series X, i.e., $Y=h^{*} X$, what is the coherence between X and Y ?
- If Y is a linear estimator of X, then $Y=h^{*} X$ with no noise then

$$
S_{X, Y}(f)=H(f) S_{X}(f) \text { and } S_{Y}(f)=|H(f)|^{2} S_{X}(f)
$$

- And the coherence is 1 .
- Any nonlinearity or noise in the system will reduce the coherence.
- Reduction in information or estimation accuracy due to nonlinearity or noise at a given frequency

$$
1-C_{X, Y}(f)
$$

- Example 3.10
- A linear system where $Y=h^{*} X+Z$ where Z is noise
- The filter is a 33 tap bandpass filter between [0.15, 0.35] normalized frequencies
- How effectively can X at frequency 2.5 be estimated from Y ?

- Example 3.11
- Two nonlinearly related signals, assume $f=4 \mathrm{~Hz}$

$$
\begin{aligned}
X_{i} & =A \cos (2 \pi f i+\theta) \forall i=1,2, \ldots, n \\
Y_{i} & =X_{i}^{2}+Z_{i}
\end{aligned}
$$

- Are X and Y coherent at frequency 4 Hz ?
- Mutual information quantifies relationship between data sets
- Ignores relative timing and causality
- Ignores frequency content of the data

$$
\begin{aligned}
I\left(X_{1}^{n} ; Y_{1}^{n}\right) & =\sum_{i=1}^{n} I\left(X_{1}^{n} ; Y_{i} \mid Y_{1}^{i-1}\right) \\
& =I\left(X_{1}^{n} ; Y_{1}\right)+I\left(X_{1}^{n} ; Y_{2} \mid Y_{1}\right)+I\left(X_{1}^{n} ; Y_{3} \mid Y_{1}^{2}\right)+\ldots
\end{aligned}
$$

- In many scenarios the frequency content of the data is a critical element in the analysis or inference
- Data from music
- Auditory neurological data
- Neurological data in different frequency bands have different significances
- Alpha, theta, beta, gamma, and high gamma bands
- Mutual information in frequency

$$
M I_{X, Y}\left(f_{i}, f_{j}\right)=I\left(d \tilde{X}_{f_{i}} ; d \tilde{Y}_{f_{j}}\right)
$$

- That is, mutual information between Fourier transforms of the two time series

$$
\begin{aligned}
& X_{i}=\int_{0}^{1} e^{j 2 \pi i f} d \tilde{X}_{f} \\
& Y_{i}=\int_{0}^{1} e^{j 2 \pi i f} d \tilde{Y}_{f}
\end{aligned}
$$

- Here $i=1,2, \ldots, n$

$$
X_{i}=\int_{0}^{1} e^{j 2 \pi i f} d \tilde{X}_{f}
$$

$$
\begin{aligned}
& X_{1}^{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \text { is the recoded data and } \\
& \tilde{X}_{f} \text { for } f \in[0,1] \text { is spectral representation of data }
\end{aligned}
$$

- Note that mutual information can be computed for any data set with time as the index or frequency or space.
- It has been shown that when X and Y have a linear relationship then

$$
M I_{X, Y}(f, f)=I\left(d \tilde{X}_{f} ; d \tilde{Y}_{f}\right)=-\log \left[1-C_{X, Y}(f)\right]
$$

- Note that coherence was defined for linear systems as

$$
C_{X, Y}(f)=\frac{\left|S_{X, Y}(f)\right|^{2}}{S_{X}(f) S_{Y}(f)}
$$

- Since it is related to mutual information in frequency it can be generalized to any data sets

$$
M I_{X, Y}(f, f)=I\left(d \tilde{X}_{f} ; d \tilde{Y}_{f}\right)=-\log \left[1-C_{X, Y}(f)\right]
$$

- Note that for range of frequencies, similar to time periods, the mutual information in frequency is defined as

$$
M I_{X, Y}\left(f, f^{\prime}\right)=I\left(d \tilde{X}_{f_{1}}^{f_{n}} ; d \tilde{Y}_{f_{1}^{\prime}}^{f_{n}^{\prime}}\right)
$$

- Example 3.12
- A linear system where $Y=h{ }^{*} X+Z$ where Z is noise
- The filter is a 33 tap bandpass filter between [0.15, 0.35] normalized frequencies
- The mutual information between X and Y

- Example 3.13
- Two nonlinearly related signals, assume $f=4 \mathrm{~Hz}$

$$
\begin{aligned}
& X_{i}=A \cos (2 \pi f i+\theta) \forall i=1,2, \ldots, n \\
& Y_{i}=X_{i}^{2}+Z_{i} \\
& \begin{array}{rllll|l}
0 & & & & \\
4 & & & & \\
8 & & & & & \\
12 & & & & & \\
16 & & & & & \\
0 & 4 & 8 & 12 & 16 & 0
\end{array}
\end{aligned}
$$

- Example 3.14
- An experiment with no known ground truth
- A visual task, one trial, one monkey, non-matched (rotated image)

- Local field potential recordings from visual cortex about 500 trials
- Increase in Coherency between recorded time series
- Theta band (3-8 Hz)
- Matched trials
- As the $2 n d$ scene is processed

4. Frameworks for Learning from Data

- Parametric models
- Accuracy of the model
- Complexity of the model
- Linear
- Gaussian
- Poisson
- Non-parametric, data driven, model free, universal, ...
- Issues
- The size of the data
- Relevance of the data
- Overfitting
- Merits
- Not limited by the model
- Generate sufficient amount of data
- to explore relevant features of the physical system
- to use the features to manipulate the system

5. Estimating Key Statistical Metrics from Data

- A critical step for
- Model based
- Data driven
- Estimating correlation, dependencies, coherence, and other measures among recordings, i.e., time series
- Entropy of discrete valued random variables

$$
H(X)=-\sum_{i} p_{X}\left(x_{i}\right) \log p_{X}\left(x_{i}\right)
$$

- Estimating the entropy
- Plugin estimator

$$
\hat{H}_{n}(X)=-\sum_{a=1}^{A} \hat{p}_{a} \log \hat{p}_{a} \text { where } \hat{p}_{a}=\frac{\# \text { occurrences of symbol } a}{n}
$$

$$
x_{i} \in\{1,2, \ldots, A\}
$$

- The random variables are assumed independent and identically distributed (i.i.d)
- It can be shown that

$$
E\left\{\left[\hat{H}_{n}(X)-H(X)\right]^{2}\right\}=O\left(\frac{1}{n}\right)
$$

- Example 5.1
- The binary random variables.
- The random variables are assumed independent and identically distributed (i.i.d)
-

$$
\hat{H}_{n}(X)=-\hat{p}_{0} \log \hat{p}_{0}-\hat{p}_{1} \log \hat{p}_{1}
$$

- The binary random variables.

$$
\hat{H}_{n}(X)=-\hat{p}_{0} \log -\hat{p}_{1} \log \hat{p}_{1}
$$

$$
\begin{aligned}
& \hat{p}_{0}=\frac{\# \text { of occurrences of symbol } 0}{n} \\
& \hat{p}_{1}=\frac{\# \text { of occurrences of symbol } 1}{n}
\end{aligned}
$$

- Example with

$$
\begin{aligned}
\mathbf{x} & =(0,1,0,0,0,1) \\
\hat{H}_{n}(X) & =\frac{2}{3} \log \frac{3}{2}+\frac{1}{3} \log 3
\end{aligned}
$$

- Example 5.2

- Example 5.2

- Example 5.2

- What are the statistical properties of firing of each neuron?
- Are the spikes in different neurons related?
- Is one neuron's spike excites another neuron to spike?
- Is one neuron's spike inhibits another neuron from firing?
- What is the anatomical connectivity graph of these neurons?
- What is the functional connectivity graph of these neurons?

Inhibitory

Inhibitory

- Neurons do not independently fire and their spike probabilities are not identically distributed
- The stimulus and the functionality is coded in the spike pattern of a population of neurons
- In many physical systems, the data symbols in time are not independent or identically distributed.

$$
p_{X_{i}}(x) \neq p_{X_{j}}(x) \text { or } p_{X_{i} \mid s}(x) \neq p_{X_{i}}(x)
$$

- Here s is the context, that is the past observed values
- Krichevsky-Trofimov (KT) estimator is a powerful technique to estimate probability of sequences.
- For discrete valued data
- Data driven with no assumptions on independence and identically distributed symbols
- Example 5.3
- Assume binary data

- KT on a tree

that $1 / 2$ fudge parameter times the size of the alphabet

$$
p\left(X_{3}=0 \mid X_{1}=0, X_{2}=1\right)=\frac{0+1 / 2}{0+1}=1 / 2
$$

how many times we have seen 0 given this context?

$$
p\left(X_{3}=0 \mid X_{1}=0, X_{2}=1\right)=\frac{0+1 / 2}{0+1}=1 / 2
$$

how many times we have seen this context?

$$
p\left(X_{3}=0 \mid X_{1}=0, X_{2}=1\right)=\frac{0+1 / 2}{0+1}=1 / 2
$$

how many times we have seen 0 given this context?

$$
p\left(X_{4}=0 \mid X_{1}=0, X_{2}=1, X_{3}=0\right) \stackrel{0+1 / 2}{0+1}=1 / 2
$$

how many times we have seen 0 given this context?
$p\left(X_{5}=0 \mid X_{2}=1, X_{3}=0, X_{4}=0\right)=\frac{0+1 / 2}{0+1}=1 / 2$

- After a few steps, a familiar context appears

- If data was assumed to be i.i.d.
- Best estimate of probability of zero $=5 / 8$
- Without i.i.d assumption and with our context
- Best estimate of probability of zero $=1 / 2$
- If the context was a little different-in one value
- Best estimate of probability of zero $=1 / 4$
- Example 5.4

0
 probability of this symbol?

past values: the context
how many times we have seen this context?

$$
p\left(X_{9}=0 \mid X_{6}=0, X_{7}=1, X_{8}=0\right)=\frac{0+1 / 2}{1+1}=1 / 4
$$

- A universal method to compute the joint probability

$$
\begin{aligned}
\hat{p}_{\mathbf{X}} & =\hat{p}_{X_{n} \mid X_{1}^{(n-1)}} \hat{p}_{X_{1}^{(n-1)}}=\hat{p}_{X_{n} \mid X_{1}^{(n-1)}} \hat{p}_{X_{(n-1)} \mid X_{1}^{(n-2)}} \hat{p}_{X_{1}^{(n-2)}} \\
& =\hat{p}_{X_{n} \mid X_{1}^{(n-1)}} \hat{p}_{X_{(n-1)} \mid X_{1}^{(n-2)}} \cdots \hat{p}_{X_{2} \mid X_{1}} \hat{p}_{X_{1}}
\end{aligned}
$$

- Where $X_{1}^{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- The density estimator
- The KT algorithm
- The tree structure
- Converges to the true density
- Plugin estimator

$$
\hat{H}(\mathbf{X})=-\sum_{i \in\{1, \ldots, n\}} \hat{p}_{\mathbf{X}} \log \hat{p}_{\mathbf{X}}
$$

- Entropy of continuous valued random variables

$$
h(X)=-\int_{x} f_{X}(x) \log f_{X}(x) d x
$$

- Estimating the entropy
- Plugin estimator
- How does Histogram estimate perform?
- Example 5.5
- Data: 93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6 5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90

- Histogram of data
- Data: 93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6 5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90

- Histogram of data
- Data: 93.5,93,60.8,94.5,82,87.5,91.5,99.5,86,93.5,92.5,78,76,69,94.5,89.5,92.8,78,6 5.5,98,98.5,92.3,95.5,76,91,95,61.4,96,90

- Entropy of continuous valued random variables

$$
h(X)=-\int_{x} f_{X}(x) \log f_{X}(x) d x
$$

- Estimating the entropy
- Plugin estimator
- Histogram estimator performs poorly for high dimensional data
- Extreme dependence on bin size, even in one dimensional data

$$
\mathbf{X}_{1}^{n}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right) \text { where } \mathbf{X}_{i} \in \Re^{d}
$$

- Kernel density estimation (Parzen's window)
- Based on n samples of d dimensional data

$$
\mathbf{X}_{1}^{n}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right) \text { where } \mathbf{X}_{i} \in \Re^{d}
$$

- The concept:
- Consider the probability of a mass in a region

$$
P=\int_{A} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

- That is, the probability of a point being inside of area A

- The concept:
- Consider the probability "mass" in a region

$$
P=\int_{A} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

- That is, the probability of \mathbf{x} being inside of area A
- The total number of data points is n
- The probability of k points being inside region A is P^{k}

$$
P=\int_{A} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

- The total number of data points is n
- Probability of k out of n be inside region A is

$$
\operatorname{Pr}(n, k)=\binom{n}{k} P^{k}(1-P)^{n-k}
$$

$$
P=\int_{A} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

- For large n, the (average) number of points inside the region

$$
k \approx n P
$$

- If the region is assumed to be small then the density will be approximately constant

$$
\begin{gathered}
P \approx f_{\mathbf{X}} V_{A} \\
\text { where } V_{A} \text { is the volume of } A
\end{gathered}
$$

$$
P=\int_{A} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

- If the region is assumed small then the density will be approximately constant

$$
P \approx f_{\mathbf{X}} V_{A}
$$

- The probability density function over a small region, however, with enough points inside is

$$
f_{\mathbf{X}} \approx \frac{k}{n V_{A}}
$$

- If we fix the volume and determine k from the data
- We will have KDE (Parzen's window)
- If we fix k and determine the volume
- We will have K-nearest neighbor (k-NN)
- Recall the density was approximated as

$$
f_{\mathbf{X}} \approx \frac{k}{n V_{A}}
$$

- Then, in KDE the volume is fixed. Example of fixed volume hypercube

$$
K(\mathbf{x})= \begin{cases}1 & \text { if }\left|x^{(m)}\right| \leq 1 / 2, m=1,2, \ldots, d \\ 0 & \text { otherwise }\end{cases}
$$

- If the data falls inside the cube it counts as one.
- If the region was a hypercube with side h then

$$
K\left(\frac{\mathbf{X}-\mathbf{X}_{\mathbf{i}}}{h}\right) \text { will be } 1
$$

- Since the point \mathbf{X}_{i} is inside the hypercube
- Then, the total number of data points inside the kernel is

$$
k=\sum_{i=1}^{n} K\left(\frac{\mathbf{X}-\mathbf{X}_{\mathbf{i}}}{h}\right)
$$

- Example 5.6
- An illustrative example

$$
f_{\mathbf{X}} \approx \frac{k}{n V_{A}}
$$

- The KDE

$$
\hat{f}_{h}(\mathbf{x})=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right)
$$

- Using hypercube has similar rough boundaries as histogram approach does
- A candidate kernel is Gaussian

$$
K(x) \propto e^{-x^{2}}
$$

- Example 5.7
- KDE example with small h

- Moderately small h

- Mid range value of h

- Large h

- The parameter h controls smoothness of resulting estimate
- Choice of h is critical
- There are still issues with KDE
- Large dimensions
- We can not guarantee to have enough points in each area A
- K nearest neighbor is a powerful alternative to KDE
- With k-NN, we fix the number of points in a region
- The k-NN estimate is

$$
f_{\mathbf{X}} \approx \frac{k}{n V_{A}}
$$

$$
\hat{f}_{\mathbf{X}}(\mathbf{x})=\frac{k}{n V} \text { with } V \text { as the volume with } \mathrm{k} \text { points }
$$

- For a point \boldsymbol{x} to calculate density of the random vector at \boldsymbol{x}, that is, $f_{\mathbf{X}}(\mathbf{x})$
- The distance

$$
D_{i}=\left\|\mathbf{x}-\mathbf{x}_{i}\right\|_{2}=\sqrt{\sum_{m=1}^{d}\left(x^{(m)}-x_{i}^{(m)}\right)^{2}}
$$

- Choose k nearest neighbors among all points

$$
0 \leq D_{3} \leq D_{4} \leq D_{2} \leq D_{1}
$$

- For a point \boldsymbol{x} to calculate density of the random vector at \boldsymbol{x}, that is, $f_{\mathbf{X}}(\mathbf{x})$
- Choose 3 nearest neighbors among all points then calculate the volume

$$
\hat{f}_{\mathbf{X}}(\mathbf{x})=\frac{k}{n V} \text { with } V \text { as the volume with } \mathrm{k} \text { points }
$$

- Blue density is the ground truth
- Red is the k-NN estimated density

- These are examples of two density estimators as plugins for estimating
- Entropy

$$
\hat{h}(X)=-\int_{x} \hat{f}_{X}(x) \log \hat{f}_{X}(x) d x
$$

- Mutual information

$$
\hat{I}(X ; Y)=\hat{h}(X)-\hat{h}(X \mid Y)
$$

- Directed information

$$
\hat{I}\left(X_{1}^{n} \rightarrow Y_{1}^{n}\right)=\hat{h}\left(Y_{1}^{n}\right)-\hat{h}\left(Y_{1}^{n} \| X_{1}^{n}\right)
$$

- Coherence and mutual information in frequency

$$
M I_{X, Y}(f, f)=I\left(d \tilde{X}_{f} ; d \tilde{Y}_{f}\right)=-\log \left[1-C_{X, Y}(f)\right]
$$

Summary for Set I

- A probabilistic approach to dealing with recorded signals and data
- Avoid unnecessary assumption of a model
- Data driven techniques to estimate features in data
- correlation, dependence, causality, coherence

