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0. Data Representation

« The approach for learning from data
* Probabilistic modeling and algebraic manipulation
- Diagrammatic representation is often extremely useful
* Probabillistic graphical modeling
» Visualize the structure
» Infer dependence based on inspection of the graph

- Simplify complex computations



- Examples of graphical modeling in engineering problems

- Circuit diagrams

- Signal flow diagrams

» Trellis diagrams

 Block diagrams



« A graph can be viewed as the simplest way to represent a complex system
where

* Vertices are simplest units of the system

« Edges represent their mutual interactions



 Elements

 Nodes or vertices

- A random variable (data) or a group of random variables

* Links or edges

» Probabilistic relationships between the variables



- Examples of graphs
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A typical graph representing data
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* RAH2 node is influencing several nodes
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« Another example
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« does neuron 3 excite neuron 8?
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« does neuron 3 excite neuron 8?
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 Did neuron 3 causally influence firing of neuron 87

Neu FOnN 3 ...00011110000001001100001100000001100001....

Neu ron 8 ...00000111100000010111100001100000001111....
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 Learning from graphs

» ldentifying important features of data from graphs

- A graph G = (VE) with V as the set of vertices and E as the set of edges

- A graph is simple if it has no parallel edges and no loops

- Adjacent edges and adjacent vertices are defined as the terms suggest

- The degree of vertex v is d(v) as the number of edges with v as the end

* A pendant vertex is a vertex with degree 1.

16



- A graph is called regular if all vertices have the same degree

* In an undirected graph each edge is an unordered pair of vertices (u, v)

- In a directed graph each edge is an ordered pair of vertices (u, v )

17



* In degree of vertex v in a directed graph is the number of edges with v as the
end

- QOut degree of vertex v in a directed graph is the number of edges with as the
tail

* An isolated vertex is one with degree 0. In degree and out degree 0 in a
directed graph.

18



+ For undirected graph we define the following concepts and properties
« Some definitions can be extended to directed graphs
* Minimum degree of a graph  §((F)

+ Maximum degree of a graph  A(G)

19



- It can be shown that for a graph G = (V| E ) with n vertices and m edges then

Z d(v;) = 2m

- Agraph G =(V, E ) is a subgraph of graph H= (W, F ) if Vis a subset of W
and every edge in E is also an edge in F.

* A complete graph is a simple graph with all the possible edges

- A complete subgraph of graph G is called a clique.

20



« The density of a graph G = (V, E ) is defined as

p(G):ﬁfornEZ

) . (2)
where (2) = 32

« The density of a complete graph is 1

- The adjacency matrix of graph G is a n x n matrix

(011 aln\

Ag = = where G, = {

\ Apl1 -+ Onp /

1 if there is an edge between u and v
0 otherwise

21



- The spectrum of graph G = (V, E ) is the set of eigenvalues of the adjacency
matrix and their eigenvectors.

- The Laplacian matrix of graph G = (V, E ) is defined as
L=D- Ag

» where the diagonal degree matrix, D is defined as

d(vl) 0

22



« The normalized Laplacian is
L=D'2LD V2 =] - D '2AcD™"/?
- The Laplacian matrix carries some of the key properties of a graph.

+ Since the adjacency and Laplacian matrices are symmetric their eigenvalues
are real.

- The eigenvalues of the normalized Laplacian are in [0, 2].

 This fact makes it convenient to compare the spectral properties of two
graphs.

23



- Two graphs are isomorphic if any two vertices of one are adjacent if and only
If the equivalent vertices in the other graph are also adjacent

f(a) =1 @

f(b) = 6

f(c) =8 5 6

fld) =3

fg) =5

f(h) =2 M

w1 @




- Graphs that have the same spectrum are referred to as cospectral ( or
isospectral)

- If two graphs have the same eigenvalues but different eigenvectors they are
referred to as weakly cospectral.

» Although adjacency matrix of a graph depends on the labeling of the vertices,
the spectrum of a graph is independent of labeling.

* Isomorphic graphs are cospectral but not all cospectral graphs are
Isomorphic

25



- The complement of graph G =(V, E)is G = (V, E)

» where the edges in complement graph are the ones not in E

- Common binary and linear operations can be defined for graphs

- Complement, union, intersection, ring sum, ...

« examples of commutative and associative operations.

26



- A community is a group of vertices that “belong together” according to some
criterion that could be measured

« An example, a group of vertices where the density of edges between the
vertices in the group is higher than the average edge density in the graph

 In some literature a community is also referred to as a module or a cluster.

27






« Example 6.1.
1 0 0 0 0 1 0 0 1
0 2 0 0 1 0 1 O —1
D_OOl()A_Ol()OL_O
0 0 0 0 0 0 0 0 0

o O O O

- The eigenvalues of adjacency matrix (\/5, 0, 0, —\/5)

(3,1,1,0)

* The eigenvalues of the Laplacian matrix

- One isolated vertex and two pendent vertices



« Example 6.1

- Alternative adjacency and Laplacian matrices are

0 0 1 0 1 0 -1
0 0 0 0 0 0 0
A=11 0 0 1 =10 2
00 10 0 0 -1

 Eigenvalues of A and L are

(v/2,0,0, —V/2) (3,1,1,0)

30



« Example 6.2

* The bipartite graph

31



« Example 6.2

* The bipartite graph

» The adjacency metric

- The Laplacian

L =

oo w

o = O O

-

O =k = O O O

L \ L \ L \
I I I

o= O O O O

o OO O =

—_—O O O O

-

OO OO O =
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« Example 6.3 M\

« A complete graph \\2//

* The diagonal degree matrix is D = 4x/ where | is a 5x5 identity matrix

* The Laplacian is




« Example 6.4

* A regular graph with D = 2x/ where I is a 4x4 identity matrix

N

34



- Graphs can be used to

- efficiently compute different functions of data

* represent data

- identify which vertices-data are significant

 reduce dimensionality and only focus on important vertices-data

35
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» Closeness
« Degree

» Eigenvector
- Katz

- PageRank

 Defining a suitable centrality metric (or index of significance) is important
Centrality



* Degree centrality

* The degree vector d = Ae where A is the adjacency matrix of the graph
and e Is the all 7 vector.



* Degree centrality

 For directed graphs

* In degree centrality

« QOut degree centrality

38



* Degree centrality

 For directed graphs

* In degree centrality

« QOut degree centrality




* Degree centrality

 For directed graphs

* In degree centrality

« QOut degree centrality




+ Eigenvector centrality

* ldentifying important vertices in a large network is critical problem with
numerous applications.

« A vertex is important if its adjacent vertices are important

® @

® o OJOJO



+ Eigenvector centrality

* ldentifying important vertices in a large network is critical problem with
numerous applications.

« A vertex is important if its adjacent vertices are important

@ which one is @ @

more important?

) @‘/@ OYORO

® © @



+ Eigenvector centrality

* ldentifying important vertices in a large network is critical problem with
numerous applications.

« A vertex is important if its adjacent vertices are important

- Centrality is proportional to the centrality of adjacent vertices
Evi X E Evj — E g 5 Evj
jeEN; J

- A system of equations with n unknowns

43



Evi X Z Evj — ZCL@]‘EW

jENi J

+ Eigenvector centrality

AN, = AqE,

« The eigenvector of the adjacency matrix

0O 1 0 0 0 0 1
1 01 0 0 0 1 @ @
o 1 0 1 0 0 O

Ac=1 0 0 1 0 1 1 O
o 0 0 1 0 1 O @@@
O 0 0 1 1 0 O
1 1.0 0 0 0 0



Evi X Z Evj — ZCL@jEij

jENi J

+ Eigenvector centrality

ANE, = AgFE,

» The eigenvector of the adjacency matrix

<0 1 00 0 0
1 0 T 0 0 0 1 e, ©
010100 0

Ag = O 0 1 0 1 1 O ~>
000 10 1 0 OXOJO,
000110 0
1 1.0 0 0 0 0



* Intuition starts with degree centrality (

* Degree vector X =

\

DO DO DO W Wi

/

* Incorporating the degree of the neighbors

(

AgX =

_ o O O O = O
_o OO = O
S OO = O = O
SR = O = OO
O R O~ O OO
OO == O OO

O OO OO -

vt Ot Ot O O O Ot

ORORC)
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« The process of adjusting the significance of a node based on the significance
of neighbors can continue till the adjustment settles

(01000 0 1Y\ /5Y) [11)
1 0100 0 1 6 16
01 0100 0 6 12
0010110 6 | = 16
00010 1 0 5 1
000110 0 5 11
\1 1 00000/\5/) \11)

- Leading to an eigenvector of the matrix A

\E, = AcE,



* The set of eigenvalues are -1.81 -1.00 -1.00 -1.00 0.47 2.00 2.34

* The eigenvector corresponding to the largest eigenvalue will have non-
negative elements since the adjacency matrix has non-negative elements
( from the Perron-Frobenius theorem)

- That is also the best lower rank approximation of the matrix A

0.33

» Eigenvalue 2.34 and the corresponding eigenvector 0.45
0.38

E, = 0.45

0.33

0.33

0.33



0.33

0.38

OJOXO

0.45

0.33

0.33
0.45
0.38
0.45
0.33
0.33
0.33
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Eigenvalue 2.34 and the corresponding eigenvector

The average degree of vertices is 2.28

It can be shown that 2.28 < 2.34 < 3, that is, the value of the largest
eigenvalue of A is between the average degree and the maximum degree of
the vertices

The consequence of eigenvector centrality is to only focus on critical vertices
and reduce the dimensionality of the problem.

50



- Graphs to better understand dynamics of networks

51



Aphasia

- An impairment of language, affecting the production or comprehension of speech
and ...

Often due to injury to the brain

« Most commonly from a stroke ...



he language system

Unigue to human

Impact of aphasia
How we process visual information
How we recall
How we articulate

How we speak



Our understanding today

 Inferences based on responses in high gamma power

« >60 Hz



Our understanding today

* Visual cortex




Our understanding today

Left temporal cortex (processing of semantics)

e )
IV o i b S ke

gy —
%  ®




Our understanding today

- Broca region (speech production)




Our understanding today

 Motor cortex




Our curiosity

Inference based on responses in high gamma power
High gamma >60 Hz
- What are the underlying mechanisms of our language region?
- Are there causal relations among recorded signals?
- Are there coupling (coherency) among recordings in different frequencies?

- How are the network dynamics as language is produced?



he experiment

e oo
> Q > Q
'« image '« fixation cross — .
0 se shown 7 sec shown 5 s
DR Trial 1 oo > Trial 2 -----

®  stimulus onset

< start of articulation



Recordings

Electro-cortico-graphy (ecog)

Learn language production

[ epileptic patients

IMPLANT

ECoG

.‘ " \
o000 0y
TR TR
0 .‘. o .'. 2 -
T XXX,
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Il E E RLE
<IEXIOTER S
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Channel 5

Channel 4

Recordings
Channel 3¢

Channel2-NMAV”VWV¢\“VﬂvﬂwﬁVﬂd\ﬂ¢yPVVMH\qubw\f
 Local field potentials LFP (time series) Channel 1 WWWWWWWWM\AW

. . : 0 1 2 3 4 S
Spatio-temporal analysis Time(sec)

 100-300 time series

IMPLANT £CoG

EEG
+ 200-500 trials /J g
',l.ll.n.
At 00 \
Fomyaitessss \\)
Sartimy
AP e )
> e t=rJ
/ - . 3;’
(/ v

-
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Graphs

Spatial relationships

Undirected

Coherency of time series

Coherency in high gamma

Directed

Causal relation

Information flow

2 3
Time(sec)



Back to language production

- Electrodes as vertices

- Edges
» Undirected: coupling at different frequencies
» Directed: causal relation

- Graph dynamics as language is produced

MI in high gamma
at articulation

DI at articulation



Graphical analysis-undirected

« edges

after stimulus

 undirected: coupling at high gamma

at articulation

after articulation




Graphical analysis-undirected

- Edges
- Undirected: coupling at high gamma

- Graph density

_ 1/2 Z?:1 d(v;)
(2)

- The degree of vertex v is d(v) as the number of edges of v

p(G)




Graphical analysis-undirected

- Edges

- Undirected: coupling at high gamma

graph density

0.18

0.16 -

\N\

01

0.12

0.08 -

0.06 -

0.04

articulation time

==@== (ndirected connection density |

|

WA

)

10 20

!
30 40 50

Time Windows

6C



Multiscale graphical analysis-directed

- Coarse scale: graph density
- Intermediate scale: louvain community

* Fine scale: in degree and out degree



Multiscale graphical analysis-directed

_ 1/2 Z?:l d(v; )
(2)

- Coarse scale: graph density p(G)

* Increase in graph density prior to articulation

articulation time

> 0.06

[

& 004

9 .

r

© 0.02

5 NP
O L]

-288 to -32
Time Windows



Multiscale graphical analysis-directed

_ 1/2 Z?:l d(v; )

- Coarse scale: graph density p(G)

(5)

* Increase in graph density prior to articulation

articulation time

0.08
0.06
0.04

graph density

0.02

-256t0 0
Time Windows



Multiscale graphical analysis-directed

- Coarse scale: graph density p(G)

Intermediate scale: louvain clusters




multiscale graphical analysis-directed

Coarse scale: graph density ,O(G)
Intermediate scale: louvain clusters

identifying significant clusters

a practical algorithm to find “best” clustering

« density of intra-cluster edges to inter cluster edges



Number of clusters
w ESN (@) ] D ~ 0]

N

—

Multiscale graphical analysis-directed

Coarse scale: graph density p(G)

Intermediate scale: louvain clusters

25
Number of Louvain clusters vs time

20 ~

10 -

Number of connections per cluster

10 20 30 40 50 60 0 10
Time Windows

Number of connections per cluster vs time

20

30
Time Windows

40

50



articulation time
Multiscale graphical analysis-directed

Coarse scale: graph density p(G )

 |Intermediate scale: louvain clusters

graph density




Multiscale graphical analysis-directed

- Coarse scale: graph density ,O(G)
- Intermediate scale: louvain community

* Fine scale: in degree and out degree

Out degrees of nodes vs time

In degrees of nodes vs time

20 20

40 40 - 35
125 130
2 60 3 60
8 8
= S {25
-— 720 -—
ticulation ti : :
L LUl
arudcuiation time 80 80 -
4115
100 100

120

10 20 30 40 50 10 20 30 40 50
Time Windows Time Windows



Multiscale graphical analysis-directed

- Coarse scale: graph density p(G)

- Intermediate scale: louvain community i _In degrees of nodes vs time

* Fine scale: in degree and out degree 10

(0]
\

®»
T

AN
\

articulation time

verage in degree

/

10 20 30 40

Time Windows

50

60



take home message

 building a framework to understand language production
* increased functional and effective connectivity
+ onset of stimulus

« articulation

 heavier clusters at articulation



- A graph can also capture the way joint probability distributions of all variables
can be decomposed and then computed

- Different graphical models for inference

- Bayesian networks

 Markov random fields

 Factor graph

/8



« Example 6.5

- A common motivating example

- Difficulty of an exam, intelligence of the student, grade in a class, student’s
SAT exam results, professor’s letter of recommendation

- Denoted as D, i, g, S, |, respectively

- How is the dependency structure of all these variables?

79



« Example 6.5

- How is the dependency structure of all these variables?

* Intuitively

Intelligence

80



« Example 6.5

Intelligence
 The joint probability
PD,g,i,S,l = PD Pi PS|i Pg|D,i Pl|g

« Lets find out how

81



« Example 6.6

« Some basic concepts for two random variables, that is, two data sets

FX1,X2(CL, b) — P’I“{Xl S CL,XQ S b}

FXl’XQ(GJ,b) — PT{Xl S CL,XQ S b}
— Pr{A = {we QX (w) <a}N B = {w € QXa(w) < b}
= Pr{B|A}Pr{A}

82



« Example 6.6

« Some basic concepts for two random variables, that is, two data sets

FX1,X2(CL, b) — P’I“{Xl S CL,XQ S b}

FXl,Xz (CL, b) — FX2|X1 (b‘a)FX1 (a)
:PT{Xl SCL,XQ Sb}:PT{XQ §b|X1 SCL}P’F{Xl SCL}

Fx,(b) = lim Fx, x,(a,b)= lim Pr{X; <a, X, <b}

a—+ o0 a——+ o0

83



- If the data sets are discrete valued then probability mass functions (pmf’s) are
defined and we will have similar implications

Px,.x,(a,b) = Pr{X; = a,Xs = b}

PX,,X5 (CL, b) — PX5| X, (b‘a)p)ﬁ (CL)
— PT’{Xl — CL,XQ — b} — PT’{XQ — b‘Xl — CL}P?"{Xl — CL}

Px,(b) = Zle,Xz(aa b) = ZPT{Xl = a, X2 = b}

84



- If the data sets were continuous valued then probability density functions
(pdf’s) will be defined and we will have similar implications

b ra
Fx, x,(a,0) = Pr{X; <a,Xs < b} = / / fx1,x, (w1, T2)dw1ds

fx1,x,(T1,%2) = fx,x, (T2]71) fx, (71)

—+ o0

+00
Fxy(22) :/ Fx1,x, (21, 22)dr :/ fxs 15, (w2]@1) fx, (21)dx

— O — O

85



- Efficient graphical models

« Compute joint distribution of data—global function of multiple variables

FX — FX17X27X37X47X5

» Marginalize

Fx,(r3) = lim lim lim im  Fx, Xy X3.X4.Xx
r1—+00 Lo—>+00 Ty —+00 Ty5——+0C

86



- Efficient graphical models

« Compute joint distribution of data—global function of multiple variables

X = Jx1.X2,X5,X4,X5

» Marginalize

—+ o0 —+ o0 —+ o0 —+ o0
fx,(x3) = / / / / X1 X0 X5.X4.X5 (%1, T2, T3, Ta, T5)dr1drodrsdTs
. — OO — OO — OO — OO

87



- Efficient graph

ical models

« Compute joint distribution of data—global function of multiple variables

» Marginalize

ng 5153

PX (X) — PX1,X2,X3,X4,X5

L L L 2 PX1,X2,X3,X4,X5 ($17$2>=’L‘37$4,$5)

88



- Critical for inference problems

* The global function factorizing into local functions

FX1,X2 (CL, b) — FX2|X1 (b|a)FX1 (CL)
fx1.x: (%1, 22) = [x,)x, (T2]21) fx, (71)

Px,,x5(a,b) = px,|x, (bla)px, (a)

 Graphical models are powerful tools in representing these expressions

89



- Bayesian network—directed graphs

- Consider three variables and their joint distribution

Fx, x,.x5(x1,22,23) = Fx,

X1,X0 (933

X1,X0 (.2133

xl? xZ)FXl,XQ (ZC17 '/EQ)

X1, ZUQ)FX2|X1 (5U2|371)FX1 (331>

90



- Bayesian network—directed graphs

- Consider three variables and their joint distribution

Fx, x, x,(x1,22,23) = Fx,

— FX3

X1,X0 (333

X1,X0 (’/E3

xl? xZ)FXl,XQ (ajl? '/EQ)

X1, ZUQ)FX2|X1 (5U2|371)FX1 (331>

91



- Bayesian network—directed graphs

- Consider three variables and their joint distribution

Fx, x, x,(x1,22,23) = Fx,

— FX3

X1,X0 (333

X1,X0 ('/E3

xl? '/’UZ)FX]_,XQ (ZE17 '/EZ)

X1, 372)FX2|X1 (372|371)FX1 ($1)

92



- Bayesian network—directed graphs

- Consider three variables and their joint distribution

Fx, x, x,(x1,22,23) = Fx,

— FX3

X1,X0 (333

X1,X0 ('/E3

xl? '/’UZ)FX]_,XQ (ZC17 '/EZ)

X1, 372)FX2|X1 (372|371)FX1 (371)
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- Bayesian network—directed graphs

- Consider three variables and their joint distribution

Fx, x,.x5(x1,22,23) = Fx,

X1,X0 (333

X1,X0 ('/E3

xl? '/’UZ)FX]_,XQ (.fljl, '/EZ)

X1, 372)FX2|X1 (372|371)FX1 ($1)

94



- If X9 and X; are independent

Fx, x,,x5(T1, %2, 3) = Fixyx, x, (3|1, 12) Fx, (12) Fx, (71)



- If X9 and X4 are independent
Fx,,X5,x5 (%1, T2, ¥3) = Fixy)x,, x, (@3|01, 22) Fx, (22) Fx, (1)
- Here X1, X9 are the parents of X3
« The computation of joint density
- Decomposed Xl 2

* Tractable



 An alternative order of conditioning would lead to

FX17X27X3 — FXl XQ,XgFXQ,Xg

— FXl XQ,XSFX2|X3FX3

97



- If X9 and X7 are independent

» This graph will not be reduced

FX17X27X3 — FX1 XQ,XgFXQ,Xg

= I'x, X5, X3 1'X5 | X5 x5

XS 98



- If X9 and X7 are independent

» This graph will not be reduced

- Since X7 and X5 may not be independent conditioned on X3

FX1,X27X3 — FX1|X2,X3FX2,X3

— FX1|X2,X3FX2|X3FX3

99



- If X9 and X7 are independent

» This graph will not be reduced

Since X7 and X5 may not be independent conditioned on X3

« Can we construct a counter example to show?

X1 2

FX1,X2>X3 — FX1|X2,X3FX2,X3

— FX1|X2,X3FX2|X3FX3

X3 100



* However, if X5 and X3 were independent then

* The graph will be reduced

FX1,X2,X3 — FX1|X2,X3FX2,X3

— FX1|X2>X3FX2|X3FX3

FX1,X2,X3 — FX1|X2,X3FX2FX3

XS 101



- If the graph is

102



- If the graph is

* Then,

FX1,X2,~-,X7 — FXlFX2FX3FX4|X17X27X3FX5|X17X3FX6|X4FX7|X47X5

103



- If the graph is

104



- If the graph is

* Then,

Fx, xo,..x,,y =FvFx ;vFx,y - - Fx,|v

105



« The repetition could be simplified by defining a plate

106



- Graphical probabilistic model with deterministic parameters

n
FX yis,a.0? = Fyjo | [ Fxijv,si0

1=1
Y
O @ ?
3 D
0'2.
X

107



- Graphical probabilistic model with deterministic parameters

n
FX yisa.o? = Fyja | | Fxiv,s,02
i=1

+ Forexample, F'x v . »2 Gaussian N Y
AESEEY P ’?
v

O @

108



 Graphical probabilistic model with observed variables

n
FX yisa.o? = Fyja | | Fxiv,s,02
i=1

O @

observed variables ____Si 1Y

109



 Graphical probabilistic model with observed variables

n
FX yis,a.0? = Fyjo | [ Fxijv,si0

1=1

latent variable
\ Y

d o

O @

7

.
X;
s; M,

110



- Can we infer independence or conditional independence from Bayesian
graphs? Let us investigate via a few simple examples.

» The joint pmf of these variables using the graph is

PX,X2,X35 — PX3PX|X3PX5| X5

X1 2

X3 111



- Can we infer independence or conditional independence from Bayesian
graphs? Let us investigate via a few simple examples.

PX1,X5,X5 = PX3PX,|X3PX5| X5

L pX17X27X3 L
PXi,X5|Xs3 = — PX,|X3PX5|X5
PXs;

. - Xq :
* They are independent conditioned on Xg

Node X3 is tail-to-tail
with respect to path from X; to X5 X

112



- Can we infer independence or conditional independence from Bayesian
graphs? Let us investigate via a few simple examples.

* The joint pmf of these variables using the graph

PX,X2,X35 — PX3PX|X3PX5| X5

. X7 and X5y are independent conditioned on X3

X1 2
- Are X1, X5 independent 7

X3 113



- Can we infer independence or conditional independence from Bayesian
graphs? Let us investigate via a few simple examples.

PX1,X5,X5 = PX3PX,|X3PX5| X5

PXy,Xy = Zle,XQ,Xg = ZPX3PX1|X3PX2|X3 # DX, DX,
L3

L3

X1 2

* They are not independent unless

X7 and X3 as well as X9 and X3 are independent

X3 114



« Another example

PX1,X2,X5 — PX1PX3|X1PXs| X5

PX,,Xy = Zle,Xg,Xg — PX, ZPX3|X1PX2|X3 # DX, DX,
L3

L3

- They are not independent X, 2

X3 115



« Another example

PX1,X2,Xs —PX1PX3|X1PX5| X5

PX1,X5,X35  PXiPX31X1PX5| X5
PX; PXs

PXi,Xs|Xs3 = — PX1|X3PX5| X5

* They are independent conditioned on Xg

Node X3 is head-to-tail
with respect to path from X; to X5 X3

116



« Another example

PX1,X2,X3 — PX1PXoPX5|X1,X5

Are X7, X5 independent 7

X3 117



« Another example

PX1,X2,X3 — PX1PXoPX5|X1,X5

Are X7, X5 independent 7

PXi.Xs = E PXi,X5,X3 —PX1PX5 E PX3|X:1,Xs = PX,1PX5
3

L3

* Yes they are independent X, 2

X3 118



« Another example

PX1,X2,X3 — PX1PXoPX5|X1,X5

Are X, X5 conditioned on X3 independent 7

le,XQ,Xg . lepX2pX3|X1,X2
PXs; PXs

PXi,X5|X5 = 7 Px, 1 X3P X5| X5

X1 2
» They are not independent conditioned on X3

Node X3 is head-to-head
with respect to path from X; to X5 X3 10



« Example 6.7
« Two random variable are independent
« Conditioned on a third random variable then they are not.

- Assume X and Y are independent random binary data (that is basically a coin
flip experiment).

* Equally likely to 0 or 1.

120



« Example 6.7

« Then by assumption they are independent.

« Define Z to be another random variable as Z = X+Y

- Xand Y are dependent conditionedonZ =1

P(X=1,Y =1|Z=1)=0however P(X =1|Z =1)P(Y =1|Z=1)=1/2x 1/2 = 1/4

121



. Summary of X; and X5 independence

- Conditionally independent but not independent

* not blocked unless the node on the path is observed
- Conditionally independent but not independent

* not blocked unless the node on the path is observed
* Independent but not conditionally independent

 blocked unless the blocking node is observed

122



- Bayesian networks

- A tail-to-tail node or head-to-tail node “leaves” a path unblocked unless
the node is observed (that is, the distribution is conditioned on that
variable). In that case it blocks the path

X1
- Conditionally independent but not independent

123



- Bayesian networks

- A head-to-head node blocks the path if it is unobserved

* |f the node, and/or at least one of its descendants, is observed then the
path becomes unblocked

Xq
 Independent but not conditionally independent

124



- Bayesian networks

- A head-to-head node blocks the path if it is unobserved

* |f the node, and/or at least one of its descendants, is observed then the
path becomes unblocked

- When the path between two nodes is blocked then the two nodes (the
variables) are independent

125



* These rules apply to larger networks and to sets of nodes

- The path between X1 and Xs

X1

+ Unblocked by X5 X

« Tail-to-tall

X3
- Blocked by X3 O
X9
« Head-to-head !
X4

X1 and X5 are independent

126



- If the path between two nodes is blocked then the nodes are independent—
conditioned on the variable that blocked the path

127



* These rules apply to larger networks and to sets of nodes

- The path between X1 and Xs

» Blocked by X5
» Conditioned
- Tail-to-tall

+ Blocked by X3

- Head-to-head

X1

X1 and Xy are independent

v

O

128



* These rules apply to larger networks and to sets of nodes

- The path between X1 and Xs

X1

» Unblocked by X3 X-

- Head-to-head

X3
« Conditioned on its descendent O
Xo

- Unblocked by X5 !

« Tail-to-tall

I I X4

X1 and X are not independent 129



* In general, Bayesian networks can be represented as

K

DX = H Pxy|p. (k) Where pg (k) is the set of parent’s of node &
k=1

* Note that Bayesian graphs do not have cycles

* Directed acyclic graph X, 2

+ Invalid PX1|X3PX5| X3P X3| X4

X3 130



- Graphical modeling for inference

- Bayesian networks

 Markov random fields

 Factor graphs

131



- Conditional independence is often difficult to infer from directed graphs.

» Undirected graphs are also powerful tools

 Markov undirected networks

- Clique

A group of nodes fully connected

« Maximal clique

« Cliques that can not be expanded

132



 Cliques

133



 Cliques

134



 Cliques
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- Maximal clique

136



- Maximal clique

137



* Not a clique

138



» The probabillity distribution can be written as
1

Fx = — | [ ve(X)
4 C

where ¢ is the “potential function” of clique

« An example,

O—O~+ —0—0

A1 X9 Xn—1 Xy

Fx = Fx, x,,...x, = Fx, Fxy1x, Fxaxs - - Ex, 1 X0 0

1
FX — Ewl,Q(Xla X2)¢2,3(X27 XS) ... wn—l,n(Xn—la Xn)

139



- The network O—»O—» e M
X1 X2 Xn—1 Xy

1,2(X1, Xo) = Fx, Fx,|x,
2,3(Xo, X3) = Fx,|x,

wn—l,n(Xn—ly Xn) — FXn|Xn_1

1
FX — Ewl,Q(Xla X2)¢2,3(X27 XS) .« wn—l,n(Xn—la Xn)

140



* A less obvious example

Fx = FX1,X2,X3,X4,X5 — FXlFXQFX3|X1>X2FX4|X3FX5|X3

X1

O

X2 O ’C) >C>X5

141



Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5
 Lets recall the rules on independence
X1 and X5 are independent

X4 and X5 are not independent

X1
X3
. —Ox
142
X4



Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5

 Lets recall the rules on independence

X1 and X5 are not independent conditioned on X3

X4 and X5 are independent conditioned on X3

X1
X3
X2 —P‘ ,X5
143
X4



Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5

 To convert a directed graph to an undirected graph
* Moralization
* Remove directionality in all links

- Add links to all pairs of parents of each node

X1
X3 XS
X2 Ox; X —Ox:
144
Xy




Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5

 To convert a directed graph to an undirected graph

 Moralization

* Remove directionality in all links

145




Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5

 To convert a directed graph to an undirected graph
* Moralization
* Remove directionality in all links
- Add links to all pairs of parents of each node

» Identify maximal cliques

X1
X3
'OX5
146
Xy



Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5

 To convert a directed graph to an undirected graph
* Moralization
* Remove directionality in all links

- Add links to all pairs of parents of each node
X1

X
» Identify maximal cliques
X3
X2 X: X2 —( >X5
147
Xy



Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5

 To convert a directed graph to an undirected graph

1
. Moralization Fx = §¢1,2,3(X1,X27X3)¢3,4(X3,X4)¢3,5(X3,X5)

Remove directionality in all links

Add links to all pairs of parents of each node

X1
|dentify maximal cliques
X3 X3
X OX5 X 'OX5
Maximal cliqgues form potentials
148
Xy




Fx = FXlFXQFX3|X1,X2FX4|X3FX5|X3
 To convert a directed graph to an undirected graph

1
. Moralization Fx = §¢1,2,3(X1,X2,X3)¢3,4(X3,X4)¢3,5(X3,X5)

* Remove directionality in all links

149



Fx = Fx, Fx, Fx,1x,, x: P x, 1 x5 P x5 x5

. it 1
Moralization FX — §¢1,2,3(X17 X27 X3)?7b3,4(X37 X4)¢3,5(X37 X5)

Remove directionality in all links

Add links to all pairs of parents of each node

|ldentify maximal cliques

X1
Maximal cliques form potential functions
X3 XS
X Ox;, X —Ox.
 Adjust with parameter Z
150
X4




* The less obvious example

Fx = FX1,X2,X3,X4,X5 — FXlFXQFX3|X1>X2FX4|X3FX5|X3

151



* The less obvious example
Fx = FX1,X2,X3,X4,X5 — FXlFXQFX3|X1,X2FX4|X3FX5|X3

1
Fx = 5%,2,3(){1,X2,X3)¢3,4(X3,X4)¢3,5(X3,X5)
X1

X3

X O

O

X4

OX5

152



* The less obvious example

PX = PX1PXoPX3|X1,XoPX4| X3P X5]X5

1
PX = §¢1,2,3(X1,X2,X3)¢3,4(X3,X4)¢3,5(X3,X5)

 where

Z = 1h1,23(X1, X2, X3)th3.4( X3, Xa)hs 5( X3, X5)
X

X1

153



* The less obvious example

1
Fx = E¢1,2,3(X1>X2,X3)¢3,4(X3,X4W3,5(X3,X5)

X1

Xo . OX5

X4 154



* The less obvious example

X1 and X5 are not independent conditioned on X3

X4 and X5 are independent conditioned on X3

X1

X4 155



* The less obvious example

X1 and X5 are not independent conditioned on X3

X4 and X5 are independent conditioned on X3

« The path between the two vertices is blocked

X ‘ OX5

X4 156



« Another illustrative example

PX = PX1PXoPX3PX4|X1X2X53

157



« Another illustrative example

PX = PX1PXoPX3PX4|X1X2X53

1
PX = E¢1,2,3,4(X1,X2,X3,X4)

X1 X3 X1
X2

158



« Another illustrative example

- Conditional independence is not present since all vertices are connected

X1 X3 X1

159



- Markov random fields and Bayesian networks are not prefect

+ Consider this directed graph

X3 160



- Markov random fields and Bayesian networks are not prefect

+ Consider this directed graph

 Now a moralized Markov random field

X3 X3 161



- Markov random fields and Bayesian networks are not prefect
+ Consider this directed graph

 Now a moralized Markov random field

X1 and X5 are independent

Xl 2 Xl 2

X3 X3 162



- Markov random fields and Bayesian networks are not prefect

« The moralized Markov random field is not very useful

X3 X3 163



- Markov random network offers a powerful tool to identify conditional
iIndependence

164



- Markov random network offers a powerful tool to identify conditional
iIndependence

« Conditioned on observed nodes

165



- Markov random network offers a powerful tool to identify conditional
iIndependence

« Conditioned on observed nodes

* Nodes in these sets are independent

 This graphical representation is indeed powerful

166



- Graphical modeling for inference

- Bayesian networks

 Markov random fields

- Factor graphs

167



« Factor graphs

 Allow a global function of several variables be expressed as a product of
factors of subsets of these variables

PX = HfS(XS)

fd fc

168



« Factor graphs

 Allow a global function of several variables be expressed as a product of
factors of subsets of these variables

px = fo(X1) o (X1, X2) fo( X1, X2) fa(X2, X3)

169



« Factor graphs

 Allow a global function of several variables be expressed as a product of
factors of subsets of these variables

PX = H fs (XS)
S
* They could simplify computation of complex functions
» They are generalizations of Bayesian and Markov graphs.
- The factor graphs are more explicit than Bayesian and Markov

* By construction, factor graphs are bipartite graphs 170



« By construction, factor graphs are bipartite graphs

px = fo(X1)fo (X1, X2) fe(X1, X2) fa(X2, X3)

fd fc

171



« By construction, factor graphs are bipartite graphs

px = fo(X1)fo (X1, Xo) fe(Xq1, X2) fa(X2, X3)

variables

fe

172



« By construction, factor graphs are bipartite graphs

px = fo(X1)fo (X1, Xo) fe(Xq1, X2) fa(X2, X3)

factors

fd fc

173




« Example 6.8

A general function factorized

Fx, x,. x5 = F1(X1) Fa (X1, X2) F3( X1, Xo) Fu( X2, X3)

174



« Example 6.8

« A function factorized

Fx, x,. x5 = F1(X1) Fa (X1, X2) F3( X1, Xo) Fu( X2, X3)
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« Example 6.8

« A function factorized

Fx, x,. x5 = F1(X1) Fa (X1, X2) F3( X1, Xo) Fu( X2, X3)

/factor node

176



« Example 6.8

« A function factorized

Fx, x,. x5 = F1(X1) Fa (X1, X2) F3( X1, Xo) Fu( X2, X3)

edge if it is a variable in that factor

/

X3 X9 X1 .



« Example 6.8

« A function factorized

Fx, x,. x5 = F1(X1) Fa (X1, X2) F3( X1, Xo) Fu( X2, X3)

178



- Factor graphs are bipartite

A generalization of Tanner graphs

» Tanner graphs were developed to describe decoding of low density
parity check codes (LDPC)

 Factor graphs are particularly useful for decoding of modern error
correcting codes

 Factor graph can unify seemingly and historically different computations/
processing of data

179



 Factor graphs unify

Kalman filtering

Statistical physics via Markov random fields

Recursive least-squared filters

Hidden Markov models

Viterbi decoding

Bayesian and Markov networks can be represented as factor graphs

180



« Recall an earlier example

Fx = FX1,X2,X3,X4,X5 — FXlFXQFX3|X1>X2FX4|X3FX5|X3

- Markov and Bayesian networks

X4 OX1
Xo XSC) OX5 X2 O X’?é >C>X5




* Recall
Fx = FX1,X2,X3,X4,X5 — FXlFXQFX3|X1>X2FX4|X3FX5|X3

= Fa(X1)Fp(X2) Fo (X1, X2, X3)Fp (X3, X4)Fr(X3, Xs)



* Recall
Fx = FX1,X2,X3,X4,X5 — FXlFXQFX3|X1>X2FX4|X3FX5|X3

= Fa(X1)Fp(X2) Fo (X1, X2, X3)Fp (X3, X4)Fr(X3, Xs)

183



* Recall
Fx = FX1,X2,X3,X4,X5 — FXlFXQFX3|X1>X2FX4|X3FX5|X3

= Fa(X1)Fp(X2) Fo (X1, X2, X3)Fp (X3, X4)Fr(X3, Xs)

- Alternative factor graph representation

er 184



- Cycles in a graph

185



Fx, x,.x, = F1(X1) Fo (X1, Xo) F3( X1, Xo) Fy( X2, X3)

186



if F5 and F3 were combined

F5(X1, Xo) = Fy( X1, Xo2)F3(X1, Xo)

187



Fx, x,.x5 = F1(X1)Fo (X1, Xo)F3( X1, Xo) Fy(Xa, X3)

Cycle free Bipartite
Graph e

XS X2 Xl 188



- A graph with no cycles (or loops) is a tree where there is one and only one
path connecting two nodes




- A Bayesian network can be presented as a factor graph

pX17X27X3 :lepX2pX3|X1,X2 ¥
1

190



- A Bayesian network can be presented as a factor graph

pX17X27X3 :lepX2pX3|X1,X2 ¥
1

X3 Xo X1

191



- The Bayesian network can be moralized to yield a Markov graph

PX1,X2,X3 — PX1PXoPX5|X1,X5

X1 2

* Then, directed and undirected graphs are

X1 2

192



- Afactorgraph PX;1,X>,X3 — PX1PXoPX;5|X1,Xo

« Conversion of directed graph to undirected resulted in cycles (loops)

X 2

* Moralization step
X3

- Conversion to factor graph did not result in cycles

193



- Afactorgraph PX;1,X>,X3 — PX1PXoPX;5|X1,Xo

« Conversion of directed graph to undirected resulted in cycles (loops)
* Moralization step

- Conversion to factor graph did not result in cycles

194



- Afactorgraph PX;1,X>,X3 — PX1PXoPX;5|X1,Xo

« Conversion of directed graph to undirected/resulted in cycles (loops)
* Moralization step

- Conversion to factor graph did not yesult in cycles

195



« Example 6.9
PX = Fa,(X17 XQ)Fb(X27 X3)FC(X27 X4)

Px, = Z PX = Z Fo(x1, x2) Fyp(we, x3) Fe(22, 24)

L1,L3,L4 X\.CUQ

X1 F, Xo  Fy

O—1 —CO

X3

- Computing marginals is critical for inference

b

* Direct computation is prohibitively expensive

X4 196



« Marginalization

PX = Fa,(X17 XQ)Fb(X27 X3)FC(X27 X4)
DX, = Z PxX = Z Fo(x1,x2) Fy(x2, x3) Fe(x2, 24)

L1,Lr3,TL4 X\ZEQ

= {> _ Fulzi,22)}{)  Fy(wa,23)}{) | Fo(wa,24)}

« Distributive law

* (Xx+y)(@a+b) = xa + xb+ya+yb Xi. F, X5 F

- 3 operations versus 7/ operations F,

197



- The marginalization can be implemented efficiently with the “sum-product”
algorithm on the factor graph

« Distributive law

« Efficient reuse of intermediate sum values

* lterative data flow

198



« The sum-product algorithm on the factor graph
Px, = {Z Fo(y, 372)}{2 Fy(x2, 373)}{2 Fe(x2,24)}

* The root is the variable of interest and leaves are marginalized

root

199



« The sum-product algorithm on the factor graph
Px, = {Z Fo(y, $2)}{Z Fy(x2, 373)}{2 Fe(x2,24)}

* The root is the variable of interest and leaves are marginalized

root leaf

200



« The sum-product algorithm on the factor graph

px, = {Y Falzr,z2)}{Y Fylza,23)}{) Fo(wz,24)}

- Message passing
lu‘xl —Fq (:E]-) —

T4 X1 F, Xo Fy
Py F, (T3) = T X
HFy—ay (T2) = ZFb($2,ZI33) T &

I3 201



« The sum-product algorithm on the factor graph

px, = {Y Falzr,z2)}{Y Fylza,23)}{) Fo(wz,24)}

- Message passing

Mxi—F, (5131) —
/,UFa—mg (w2) = ZFa(ZUhiUz)

initial factor T 1
Uy (T 4) =1
UE e (X E Fo(xo,x4)
X1 F, Xo Fy
M$3—>Fb( ) — X3
F.
1F, —sas (T E Fyp(x2,x3)

202



« The sum-product algorithm on the factor graph
Px, = {Z Fo(y, $2)}{Z Fy(x2, xs)}{z Fe(x2,24)}

- Message passing
lu‘xl — F, (:C]_) T

/vupﬁxg (x2) = > Falw1,22)

a factor and Uy F. ( 4) —
only a function
of thf-) variable P~ (T Z Fe(x2,x4)
of interest X1 F, Xy F
Mfcg—>Fb( ) — X3
F.
o, — s (T Z Fy(x2, x3)

203



« The sum-product algorithm on the factor graph

px, = {Y Falzr,z2)}{Y Fy(za,23)}{)» Fo(wz,24)}

- Message passing
Iu‘xl —Fq (:C]-) —

UF, —xo (5172) — ZFa(ZClamZ)
Pay—F, (X 4) =1

/v’ch_m72 ZF 372,%4 —>—><_<_
other factors Uos sy (X ) = T X

ke
Fy s (T E Fyp(x2,x3) T

204



* Message passing is done Has—F, (23) =

PXs; — UF,—xs (ZEQ)/’LFb_)SUQ (x2):ch—>CU2 ('CCQ)

= {» Fa(zr,22)}{) Folwa,23)H{) Fe(wa,74)}

c
T 205



» The sum-product algorithm on the factor graph with different root
Px; = {Z Z Z Fo(xo, xa) Fo (21, 5132)}{2 Fy(22,73)}
X1 o X4

* The root is the variable of interest and leaves are marginalized

root
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» The sum-product algorithm on the factor graph with different root
Px; = {Z Z Z Fo(xo, xa) Fo (21, 5132)}{2 Fy(22,73)}
X1 o X4 o

* The message passing

lu'$1—>Fa (:Cl) — ]-

ks (w2) = 3 Falr, )
L1

M, —F, (334) =1

X — FC ’
Koy (22) Z (T2, 4) X—>1 Fa—bX—>2 Fb—>
L4
Hxzo— Fy, (5132) — UF,—zxo ($2),LLFC—>532 (ZEQ) T X3
F.
HE,—xs3 (5133) — ZFb(x2ax3)Ux2—>Fb (332) T
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» The sum-product algorithm on the factor graph with different root
Px; = {Z Z Z Fo(xo, xa) Fo (21, 5132)}{2 Fy(22,73)}
X1 o X4 o

+ The message propagates from root back to leaf nodes

Has— Fy ($3) =1

HUFy, —xo (372) — ZFb(Qan 333)
T3

Mxo—F, (xQ) — UF,—xo (CEZ)MFC—HBQ (xQ)

wE, e (£1) = D Fal®1, 22) ey 5, (22) — — — —
o X1 F, Xo Fy
_ X3
oy 5, (02) = [0, S (T2) HF, S () |
Fe.
e (@a) = Y Fo(@, 24) a1, (22) N

To X4



» The sum-product algorithm on the factor graph with different root
Px; = {Z Z Z Fo(xo, xa) Fo (21, 5132)}{2 Fy(22,73)}
X1 o X4 o

* The message passing

PX3 — UF,—x3 (5133)
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- Another example from earlier pages in this set

O—O~ —0—0

X1 X9 Xn—1 Xy

PX = PX;,Xs,....X,, — PX1PX,5|X1PX;5|Xs - -PX,|Xn_1

1
PX = Ewl,Q(Xla X2)¢2,3(X27 XS) R wn—l,n(Xn—lv Xn)
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- Another example from earlier pages in this set

O—0Or -+ —O0—O
X1 X2 Xn—1 Xp

1
pPX = E¢1,2(X17X2)¢2,3(X27X3) o U1 (Xn—1, Xp)

Px, = Z pPxX = Z PX1,X2,... . Xn = Z PX1PX5| X1 PX3]| X5+ - PX | X1

X\ Tk X\ Xk X\ Tk
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- Another example from earlier pages in this set

= Z px = Z PX1,X5,.. . Xn = Z PX1PXo| X1 PX3| X0 -+ PX | X1

X\ Tk X\ Tk X\ T
DX, = %[xz Vi—10(Xk—1, Xg) - [Z a9 3( X2, X3) ;¢1,2(X1,X2)]H

Z ¢k k:—l—l(Xkan:—I—l an 1 n n 17 )H

Lk4+1
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- If each variable takes K possible values the complexity is O(nK2)
« A naive computation will be exponential rather than linear

- Message passing

12(71, 2)
; 1,2\%1, T2

Xl XQ X’n—l Xn
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- If each variable takes K possible values the complexity is O(nKQ)
« A naive computation will be exponential rather than linear

* Message passing

Zwlz :vl,:cz Z¢2 3(T2,13) Z% 2(71, T2)

C)-*C)—> M

214



- If each variable takes K possible values the complexity is O(nK2)
« A naive computation will be exponential rather than linear

- Message passing
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- Recall that factor graphs are ideal tools to describe PX
* Note that the sum-product algorithm is ideal for computing marginals PXs

« The max-sum algorithm is ideal for computing

X" = arg max px

X+ — INlaX Px
p 5 p
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X* = arg max px

- The max-sum algorithm is ideal for computing

*
Px, — WlaXpx
Ak X\ z

* Then, similar to distributive law

arg max px = (arg maxpy, argmaxpy, ...argmaxpy )
X mn

* Note that the probability mass function could be factored

PX = HfS(XS)

« Leading to an efficient implementation
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 Graphical modeling for inference

- Bayesian networks

 Markov random fields

 Factor graphs
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« Example 6.10



